Browse Source

测试脚本及数据

main
fhw 2 years ago
parent
commit
0392d8f888
  1. 166
      configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w32_coco_256x192.py
  2. 166
      configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w32_coco_384x288.py
  3. 166
      configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w48_coco_256x192.py
  4. 166
      configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w48_coco_384x288.py
  5. 5001878
      test/hrnet_w48_256x192/result_keypoints.json
  6. BIN
      tests/data/test/1.png
  7. BIN
      tests/data/test/2.png
  8. BIN
      tests/data/test/3.png
  9. BIN
      tests/data/test/4.png
  10. BIN
      tests/data/test/5.png
  11. BIN
      tests/data/test/6.png
  12. BIN
      tests/data/test/7.png
  13. BIN
      tests/data/test/8.png
  14. 252
      tests/data/test/result.json
  15. 212
      tests/data/test/result_nobbox.json

166
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w32_coco_256x192.py

@ -0,0 +1,166 @@
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/coco.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w32-36af842e.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=32,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = '/root/autodl-tmp/dataset/hengdian'
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)

166
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w32_coco_384x288.py

@ -0,0 +1,166 @@
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/coco.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w32-36af842e.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=32,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = '/root/autodl-tmp/dataset/hengdian'
data_cfg = dict(
image_size=[288, 384],
heatmap_size=[72, 96],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=3),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)

166
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w48_coco_256x192.py

@ -0,0 +1,166 @@
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/coco.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w48-8ef0771d.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=48,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = '/root/autodl-tmp/dataset/hengdian'
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)

166
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/hengdian/hrnet_w48_coco_384x288.py

@ -0,0 +1,166 @@
_base_ = [
'../../../../_base_/default_runtime.py',
'../../../../_base_/datasets/coco.py'
]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w48-8ef0771d.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=48,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_root = '/root/autodl-tmp/dataset/hengdian'
data_cfg = dict(
image_size=[288, 384],
heatmap_size=[72, 96],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=True,
det_bbox_thr=0.0,
bbox_file='',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=3),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)

5001878
test/hrnet_w48_256x192/result_keypoints.json

File diff suppressed because it is too large

BIN
tests/data/test/1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

BIN
tests/data/test/2.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

BIN
tests/data/test/3.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

BIN
tests/data/test/4.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

BIN
tests/data/test/5.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 413 KiB

BIN
tests/data/test/6.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 435 KiB

BIN
tests/data/test/7.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 427 KiB

BIN
tests/data/test/8.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 451 KiB

252
tests/data/test/result.json

@ -0,0 +1,252 @@
{
"info": {
"description": "For testing hengdian dataset only.",
"year": 2024,
"date_created": "2020/06/20"
},
"licenses": [],
"categories": [
{
"supercategory": "person",
"id": 1,
"name": "person",
"keypoints": [
"nose",
"left_eye",
"right_eye",
"left_ear",
"right_ear",
"left_shoulder",
"right_shoulder",
"left_elbow",
"right_elbow",
"left_wrist",
"right_wrist",
"left_hip",
"right_hip",
"left_knee",
"right_knee",
"left_ankle",
"right_ankle"
],
"skeleton": [
[
16,
14
],
[
14,
12
],
[
17,
15
],
[
15,
13
],
[
12,
13
],
[
6,
12
],
[
7,
13
],
[
6,
7
],
[
6,
8
],
[
7,
9
],
[
8,
10
],
[
9,
11
],
[
2,
3
],
[
1,
2
],
[
1,
3
],
[
2,
4
],
[
3,
5
],
[
4,
6
],
[
5,
7
]
]
}
],
"images": [
{
"file_name": "1.png",
"height": 766,
"width": 1022,
"id": 1
},
{
"file_name": "2.png",
"height": 753,
"width": 1006,
"id": 2
},
{
"file_name": "3.png",
"height": 754,
"width": 1009,
"id": 3
},
{
"file_name": "4.png",
"height": 754,
"width": 1003,
"id": 4
},
{
"file_name": "5.png",
"height": 750,
"width": 1007,
"id": 5
},
{
"file_name": "6.png",
"height": 756,
"width": 1008,
"id": 6
},
{
"file_name": "7.png",
"height": 754,
"width": 1001,
"id": 7
},
{
"file_name": "8.png",
"height": 757,
"width": 1008,
"id": 8
}
],
"annotations": [
{
"image_id": 1,
"bbox": [
361,
268,
209,
390
],
"category_id": 1,
"id": 1
},
{
"image_id": 2,
"bbox": [
422,
260,
136,
399
],
"category_id": 1,
"id": 2
},
{
"image_id": 3,
"bbox": [
423,
251,
205,
432
],
"category_id": 1,
"id": 3
},
{
"image_id": 4,
"bbox": [
501,
288,
145,
388
],
"category_id": 1,
"id": 4
},
{
"image_id": 5,
"bbox": [
343,
249,
233,
409
],
"category_id": 1,
"id": 5
},
{
"image_id": 6,
"bbox": [
500,
275,
155,
405
],
"category_id": 1,
"id": 6
},
{
"image_id": 7,
"bbox": [
417,
252,
150,
413
],
"category_id": 1,
"id": 7
},
{
"image_id": 8,
"bbox": [
425,
220,
216,
470
],
"category_id": 1,
"id": 8
}
]
}

212
tests/data/test/result_nobbox.json

@ -0,0 +1,212 @@
{
"info": {
"description": "For testing hengdian dataset only.",
"year": 2024,
"date_created": "2020/06/20"
},
"licenses": [],
"categories": [
{
"supercategory": "person",
"id": 1,
"name": "person",
"keypoints": [
"nose",
"left_eye",
"right_eye",
"left_ear",
"right_ear",
"left_shoulder",
"right_shoulder",
"left_elbow",
"right_elbow",
"left_wrist",
"right_wrist",
"left_hip",
"right_hip",
"left_knee",
"right_knee",
"left_ankle",
"right_ankle"
],
"skeleton": [
[
16,
14
],
[
14,
12
],
[
17,
15
],
[
15,
13
],
[
12,
13
],
[
6,
12
],
[
7,
13
],
[
6,
7
],
[
6,
8
],
[
7,
9
],
[
8,
10
],
[
9,
11
],
[
2,
3
],
[
1,
2
],
[
1,
3
],
[
2,
4
],
[
3,
5
],
[
4,
6
],
[
5,
7
]
]
}
],
"images": [
{
"file_name": "1.png",
"height": 766,
"width": 1022,
"id": 1
},
{
"file_name": "2.png",
"height": 753,
"width": 1006,
"id": 2
},
{
"file_name": "3.png",
"height": 754,
"width": 1009,
"id": 3
},
{
"file_name": "4.png",
"height": 754,
"width": 1003,
"id": 4
},
{
"file_name": "5.png",
"height": 750,
"width": 1007,
"id": 5
},
{
"file_name": "6.png",
"height": 756,
"width": 1008,
"id": 6
},
{
"file_name": "7.png",
"height": 754,
"width": 1001,
"id": 7
},
{
"file_name": "8.png",
"height": 757,
"width": 1008,
"id": 8
}
],
"annotations": [
{
"image_id": 1,
"bbox": [0, 0, 1022, 766],
"category_id": 1,
"id": 1
},
{
"image_id": 2,
"bbox": [0, 0, 1006, 753],
"category_id": 1,
"id": 2
},
{
"image_id": 3,
"bbox": [0, 0, 1009, 754],
"category_id": 1,
"id": 3
},
{
"image_id": 4,
"bbox": [0, 0, 1003, 754],
"category_id": 1,
"id": 4
},
{
"image_id": 5,
"bbox": [0, 0, 1007, 750],
"category_id": 1,
"id": 5
},
{
"image_id": 6,
"bbox": [0, 0, 1008, 756],
"category_id": 1,
"id": 6
},
{
"image_id": 7,
"bbox": [0, 0, 1001, 754],
"category_id": 1,
"id": 7
},
{
"image_id": 8,
"bbox": [0, 0, 1008, 757],
"category_id": 1,
"id": 8
}
]
}
Loading…
Cancel
Save