@ -0,0 +1,166 @@ |
|||
_base_ = [ |
|||
'../../../../_base_/default_runtime.py', |
|||
'../../../../_base_/datasets/coco.py' |
|||
] |
|||
evaluation = dict(interval=10, metric='mAP', save_best='AP') |
|||
|
|||
optimizer = dict( |
|||
type='Adam', |
|||
lr=5e-4, |
|||
) |
|||
optimizer_config = dict(grad_clip=None) |
|||
# learning policy |
|||
lr_config = dict( |
|||
policy='step', |
|||
warmup='linear', |
|||
warmup_iters=500, |
|||
warmup_ratio=0.001, |
|||
step=[170, 200]) |
|||
total_epochs = 210 |
|||
channel_cfg = dict( |
|||
num_output_channels=17, |
|||
dataset_joints=17, |
|||
dataset_channel=[ |
|||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], |
|||
], |
|||
inference_channel=[ |
|||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
|||
]) |
|||
|
|||
# model settings |
|||
model = dict( |
|||
type='TopDown', |
|||
pretrained='https://download.openmmlab.com/mmpose/' |
|||
'pretrain_models/hrnet_w32-36af842e.pth', |
|||
backbone=dict( |
|||
type='HRNet', |
|||
in_channels=3, |
|||
extra=dict( |
|||
stage1=dict( |
|||
num_modules=1, |
|||
num_branches=1, |
|||
block='BOTTLENECK', |
|||
num_blocks=(4, ), |
|||
num_channels=(64, )), |
|||
stage2=dict( |
|||
num_modules=1, |
|||
num_branches=2, |
|||
block='BASIC', |
|||
num_blocks=(4, 4), |
|||
num_channels=(32, 64)), |
|||
stage3=dict( |
|||
num_modules=4, |
|||
num_branches=3, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4), |
|||
num_channels=(32, 64, 128)), |
|||
stage4=dict( |
|||
num_modules=3, |
|||
num_branches=4, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4, 4), |
|||
num_channels=(32, 64, 128, 256))), |
|||
), |
|||
keypoint_head=dict( |
|||
type='TopdownHeatmapSimpleHead', |
|||
in_channels=32, |
|||
out_channels=channel_cfg['num_output_channels'], |
|||
num_deconv_layers=0, |
|||
extra=dict(final_conv_kernel=1, ), |
|||
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), |
|||
train_cfg=dict(), |
|||
test_cfg=dict( |
|||
flip_test=True, |
|||
post_process='default', |
|||
shift_heatmap=True, |
|||
modulate_kernel=11)) |
|||
|
|||
data_root = '/root/autodl-tmp/dataset/hengdian' |
|||
|
|||
data_cfg = dict( |
|||
image_size=[192, 256], |
|||
heatmap_size=[48, 64], |
|||
num_output_channels=channel_cfg['num_output_channels'], |
|||
num_joints=channel_cfg['dataset_joints'], |
|||
dataset_channel=channel_cfg['dataset_channel'], |
|||
inference_channel=channel_cfg['inference_channel'], |
|||
soft_nms=False, |
|||
nms_thr=1.0, |
|||
oks_thr=0.9, |
|||
vis_thr=0.2, |
|||
use_gt_bbox=True, |
|||
det_bbox_thr=0.0, |
|||
bbox_file='', |
|||
) |
|||
|
|||
train_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownRandomFlip', flip_prob=0.5), |
|||
dict( |
|||
type='TopDownHalfBodyTransform', |
|||
num_joints_half_body=8, |
|||
prob_half_body=0.3), |
|||
dict( |
|||
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict(type='TopDownGenerateTarget', sigma=2), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img', 'target', 'target_weight'], |
|||
meta_keys=[ |
|||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', |
|||
'rotation', 'bbox_score', 'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
val_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img'], |
|||
meta_keys=[ |
|||
'image_file', 'center', 'scale', 'rotation', 'bbox_score', |
|||
'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
test_pipeline = val_pipeline |
|||
|
|||
data = dict( |
|||
samples_per_gpu=64, |
|||
workers_per_gpu=2, |
|||
val_dataloader=dict(samples_per_gpu=32), |
|||
test_dataloader=dict(samples_per_gpu=32), |
|||
train=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', |
|||
img_prefix=f'{data_root}/train2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=train_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
val=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=val_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
test=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=test_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
) |
|||
@ -0,0 +1,166 @@ |
|||
_base_ = [ |
|||
'../../../../_base_/default_runtime.py', |
|||
'../../../../_base_/datasets/coco.py' |
|||
] |
|||
evaluation = dict(interval=10, metric='mAP', save_best='AP') |
|||
|
|||
optimizer = dict( |
|||
type='Adam', |
|||
lr=5e-4, |
|||
) |
|||
optimizer_config = dict(grad_clip=None) |
|||
# learning policy |
|||
lr_config = dict( |
|||
policy='step', |
|||
warmup='linear', |
|||
warmup_iters=500, |
|||
warmup_ratio=0.001, |
|||
step=[170, 200]) |
|||
total_epochs = 210 |
|||
channel_cfg = dict( |
|||
num_output_channels=17, |
|||
dataset_joints=17, |
|||
dataset_channel=[ |
|||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], |
|||
], |
|||
inference_channel=[ |
|||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
|||
]) |
|||
|
|||
# model settings |
|||
model = dict( |
|||
type='TopDown', |
|||
pretrained='https://download.openmmlab.com/mmpose/' |
|||
'pretrain_models/hrnet_w32-36af842e.pth', |
|||
backbone=dict( |
|||
type='HRNet', |
|||
in_channels=3, |
|||
extra=dict( |
|||
stage1=dict( |
|||
num_modules=1, |
|||
num_branches=1, |
|||
block='BOTTLENECK', |
|||
num_blocks=(4, ), |
|||
num_channels=(64, )), |
|||
stage2=dict( |
|||
num_modules=1, |
|||
num_branches=2, |
|||
block='BASIC', |
|||
num_blocks=(4, 4), |
|||
num_channels=(32, 64)), |
|||
stage3=dict( |
|||
num_modules=4, |
|||
num_branches=3, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4), |
|||
num_channels=(32, 64, 128)), |
|||
stage4=dict( |
|||
num_modules=3, |
|||
num_branches=4, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4, 4), |
|||
num_channels=(32, 64, 128, 256))), |
|||
), |
|||
keypoint_head=dict( |
|||
type='TopdownHeatmapSimpleHead', |
|||
in_channels=32, |
|||
out_channels=channel_cfg['num_output_channels'], |
|||
num_deconv_layers=0, |
|||
extra=dict(final_conv_kernel=1, ), |
|||
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), |
|||
train_cfg=dict(), |
|||
test_cfg=dict( |
|||
flip_test=True, |
|||
post_process='default', |
|||
shift_heatmap=True, |
|||
modulate_kernel=11)) |
|||
|
|||
data_root = '/root/autodl-tmp/dataset/hengdian' |
|||
|
|||
data_cfg = dict( |
|||
image_size=[288, 384], |
|||
heatmap_size=[72, 96], |
|||
num_output_channels=channel_cfg['num_output_channels'], |
|||
num_joints=channel_cfg['dataset_joints'], |
|||
dataset_channel=channel_cfg['dataset_channel'], |
|||
inference_channel=channel_cfg['inference_channel'], |
|||
soft_nms=False, |
|||
nms_thr=1.0, |
|||
oks_thr=0.9, |
|||
vis_thr=0.2, |
|||
use_gt_bbox=True, |
|||
det_bbox_thr=0.0, |
|||
bbox_file='', |
|||
) |
|||
|
|||
train_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownRandomFlip', flip_prob=0.5), |
|||
dict( |
|||
type='TopDownHalfBodyTransform', |
|||
num_joints_half_body=8, |
|||
prob_half_body=0.3), |
|||
dict( |
|||
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict(type='TopDownGenerateTarget', sigma=3), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img', 'target', 'target_weight'], |
|||
meta_keys=[ |
|||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', |
|||
'rotation', 'bbox_score', 'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
val_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img'], |
|||
meta_keys=[ |
|||
'image_file', 'center', 'scale', 'rotation', 'bbox_score', |
|||
'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
test_pipeline = val_pipeline |
|||
|
|||
data = dict( |
|||
samples_per_gpu=64, |
|||
workers_per_gpu=2, |
|||
val_dataloader=dict(samples_per_gpu=32), |
|||
test_dataloader=dict(samples_per_gpu=32), |
|||
train=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', |
|||
img_prefix=f'{data_root}/train2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=train_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
val=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=val_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
test=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=test_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
) |
|||
@ -0,0 +1,166 @@ |
|||
_base_ = [ |
|||
'../../../../_base_/default_runtime.py', |
|||
'../../../../_base_/datasets/coco.py' |
|||
] |
|||
evaluation = dict(interval=10, metric='mAP', save_best='AP') |
|||
|
|||
optimizer = dict( |
|||
type='Adam', |
|||
lr=5e-4, |
|||
) |
|||
optimizer_config = dict(grad_clip=None) |
|||
# learning policy |
|||
lr_config = dict( |
|||
policy='step', |
|||
warmup='linear', |
|||
warmup_iters=500, |
|||
warmup_ratio=0.001, |
|||
step=[170, 200]) |
|||
total_epochs = 210 |
|||
channel_cfg = dict( |
|||
num_output_channels=17, |
|||
dataset_joints=17, |
|||
dataset_channel=[ |
|||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], |
|||
], |
|||
inference_channel=[ |
|||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
|||
]) |
|||
|
|||
# model settings |
|||
model = dict( |
|||
type='TopDown', |
|||
pretrained='https://download.openmmlab.com/mmpose/' |
|||
'pretrain_models/hrnet_w48-8ef0771d.pth', |
|||
backbone=dict( |
|||
type='HRNet', |
|||
in_channels=3, |
|||
extra=dict( |
|||
stage1=dict( |
|||
num_modules=1, |
|||
num_branches=1, |
|||
block='BOTTLENECK', |
|||
num_blocks=(4, ), |
|||
num_channels=(64, )), |
|||
stage2=dict( |
|||
num_modules=1, |
|||
num_branches=2, |
|||
block='BASIC', |
|||
num_blocks=(4, 4), |
|||
num_channels=(48, 96)), |
|||
stage3=dict( |
|||
num_modules=4, |
|||
num_branches=3, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4), |
|||
num_channels=(48, 96, 192)), |
|||
stage4=dict( |
|||
num_modules=3, |
|||
num_branches=4, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4, 4), |
|||
num_channels=(48, 96, 192, 384))), |
|||
), |
|||
keypoint_head=dict( |
|||
type='TopdownHeatmapSimpleHead', |
|||
in_channels=48, |
|||
out_channels=channel_cfg['num_output_channels'], |
|||
num_deconv_layers=0, |
|||
extra=dict(final_conv_kernel=1, ), |
|||
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), |
|||
train_cfg=dict(), |
|||
test_cfg=dict( |
|||
flip_test=True, |
|||
post_process='default', |
|||
shift_heatmap=True, |
|||
modulate_kernel=11)) |
|||
|
|||
data_root = '/root/autodl-tmp/dataset/hengdian' |
|||
|
|||
data_cfg = dict( |
|||
image_size=[192, 256], |
|||
heatmap_size=[48, 64], |
|||
num_output_channels=channel_cfg['num_output_channels'], |
|||
num_joints=channel_cfg['dataset_joints'], |
|||
dataset_channel=channel_cfg['dataset_channel'], |
|||
inference_channel=channel_cfg['inference_channel'], |
|||
soft_nms=False, |
|||
nms_thr=1.0, |
|||
oks_thr=0.9, |
|||
vis_thr=0.2, |
|||
use_gt_bbox=True, |
|||
det_bbox_thr=0.0, |
|||
bbox_file='', |
|||
) |
|||
|
|||
train_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownRandomFlip', flip_prob=0.5), |
|||
dict( |
|||
type='TopDownHalfBodyTransform', |
|||
num_joints_half_body=8, |
|||
prob_half_body=0.3), |
|||
dict( |
|||
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict(type='TopDownGenerateTarget', sigma=2), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img', 'target', 'target_weight'], |
|||
meta_keys=[ |
|||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', |
|||
'rotation', 'bbox_score', 'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
val_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img'], |
|||
meta_keys=[ |
|||
'image_file', 'center', 'scale', 'rotation', 'bbox_score', |
|||
'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
test_pipeline = val_pipeline |
|||
|
|||
data = dict( |
|||
samples_per_gpu=32, |
|||
workers_per_gpu=2, |
|||
val_dataloader=dict(samples_per_gpu=32), |
|||
test_dataloader=dict(samples_per_gpu=32), |
|||
train=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', |
|||
img_prefix=f'{data_root}/train2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=train_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
val=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=val_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
test=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=test_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
) |
|||
@ -0,0 +1,166 @@ |
|||
_base_ = [ |
|||
'../../../../_base_/default_runtime.py', |
|||
'../../../../_base_/datasets/coco.py' |
|||
] |
|||
evaluation = dict(interval=10, metric='mAP', save_best='AP') |
|||
|
|||
optimizer = dict( |
|||
type='Adam', |
|||
lr=5e-4, |
|||
) |
|||
optimizer_config = dict(grad_clip=None) |
|||
# learning policy |
|||
lr_config = dict( |
|||
policy='step', |
|||
warmup='linear', |
|||
warmup_iters=500, |
|||
warmup_ratio=0.001, |
|||
step=[170, 200]) |
|||
total_epochs = 210 |
|||
channel_cfg = dict( |
|||
num_output_channels=17, |
|||
dataset_joints=17, |
|||
dataset_channel=[ |
|||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], |
|||
], |
|||
inference_channel=[ |
|||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 |
|||
]) |
|||
|
|||
# model settings |
|||
model = dict( |
|||
type='TopDown', |
|||
pretrained='https://download.openmmlab.com/mmpose/' |
|||
'pretrain_models/hrnet_w48-8ef0771d.pth', |
|||
backbone=dict( |
|||
type='HRNet', |
|||
in_channels=3, |
|||
extra=dict( |
|||
stage1=dict( |
|||
num_modules=1, |
|||
num_branches=1, |
|||
block='BOTTLENECK', |
|||
num_blocks=(4, ), |
|||
num_channels=(64, )), |
|||
stage2=dict( |
|||
num_modules=1, |
|||
num_branches=2, |
|||
block='BASIC', |
|||
num_blocks=(4, 4), |
|||
num_channels=(48, 96)), |
|||
stage3=dict( |
|||
num_modules=4, |
|||
num_branches=3, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4), |
|||
num_channels=(48, 96, 192)), |
|||
stage4=dict( |
|||
num_modules=3, |
|||
num_branches=4, |
|||
block='BASIC', |
|||
num_blocks=(4, 4, 4, 4), |
|||
num_channels=(48, 96, 192, 384))), |
|||
), |
|||
keypoint_head=dict( |
|||
type='TopdownHeatmapSimpleHead', |
|||
in_channels=48, |
|||
out_channels=channel_cfg['num_output_channels'], |
|||
num_deconv_layers=0, |
|||
extra=dict(final_conv_kernel=1, ), |
|||
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), |
|||
train_cfg=dict(), |
|||
test_cfg=dict( |
|||
flip_test=True, |
|||
post_process='default', |
|||
shift_heatmap=True, |
|||
modulate_kernel=11)) |
|||
|
|||
data_root = '/root/autodl-tmp/dataset/hengdian' |
|||
|
|||
data_cfg = dict( |
|||
image_size=[288, 384], |
|||
heatmap_size=[72, 96], |
|||
num_output_channels=channel_cfg['num_output_channels'], |
|||
num_joints=channel_cfg['dataset_joints'], |
|||
dataset_channel=channel_cfg['dataset_channel'], |
|||
inference_channel=channel_cfg['inference_channel'], |
|||
soft_nms=False, |
|||
nms_thr=1.0, |
|||
oks_thr=0.9, |
|||
vis_thr=0.2, |
|||
use_gt_bbox=True, |
|||
det_bbox_thr=0.0, |
|||
bbox_file='', |
|||
) |
|||
|
|||
train_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownRandomFlip', flip_prob=0.5), |
|||
dict( |
|||
type='TopDownHalfBodyTransform', |
|||
num_joints_half_body=8, |
|||
prob_half_body=0.3), |
|||
dict( |
|||
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict(type='TopDownGenerateTarget', sigma=3), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img', 'target', 'target_weight'], |
|||
meta_keys=[ |
|||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', |
|||
'rotation', 'bbox_score', 'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
val_pipeline = [ |
|||
dict(type='LoadImageFromFile'), |
|||
dict(type='TopDownAffine'), |
|||
dict(type='ToTensor'), |
|||
dict( |
|||
type='NormalizeTensor', |
|||
mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]), |
|||
dict( |
|||
type='Collect', |
|||
keys=['img'], |
|||
meta_keys=[ |
|||
'image_file', 'center', 'scale', 'rotation', 'bbox_score', |
|||
'flip_pairs' |
|||
]), |
|||
] |
|||
|
|||
test_pipeline = val_pipeline |
|||
|
|||
data = dict( |
|||
samples_per_gpu=32, |
|||
workers_per_gpu=2, |
|||
val_dataloader=dict(samples_per_gpu=32), |
|||
test_dataloader=dict(samples_per_gpu=32), |
|||
train=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', |
|||
img_prefix=f'{data_root}/train2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=train_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
val=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=val_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
test=dict( |
|||
type='TopDownCocoDataset', |
|||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', |
|||
img_prefix=f'{data_root}/val2017/', |
|||
data_cfg=data_cfg, |
|||
pipeline=test_pipeline, |
|||
dataset_info={{_base_.dataset_info}}), |
|||
) |
|||
|
After Width: | Height: | Size: 1.4 MiB |
|
After Width: | Height: | Size: 1.4 MiB |
|
After Width: | Height: | Size: 1.4 MiB |
|
After Width: | Height: | Size: 1.4 MiB |
|
After Width: | Height: | Size: 413 KiB |
|
After Width: | Height: | Size: 435 KiB |
|
After Width: | Height: | Size: 427 KiB |
|
After Width: | Height: | Size: 451 KiB |
@ -0,0 +1,252 @@ |
|||
{ |
|||
"info": { |
|||
"description": "For testing hengdian dataset only.", |
|||
"year": 2024, |
|||
"date_created": "2020/06/20" |
|||
}, |
|||
"licenses": [], |
|||
"categories": [ |
|||
{ |
|||
"supercategory": "person", |
|||
"id": 1, |
|||
"name": "person", |
|||
"keypoints": [ |
|||
"nose", |
|||
"left_eye", |
|||
"right_eye", |
|||
"left_ear", |
|||
"right_ear", |
|||
"left_shoulder", |
|||
"right_shoulder", |
|||
"left_elbow", |
|||
"right_elbow", |
|||
"left_wrist", |
|||
"right_wrist", |
|||
"left_hip", |
|||
"right_hip", |
|||
"left_knee", |
|||
"right_knee", |
|||
"left_ankle", |
|||
"right_ankle" |
|||
], |
|||
"skeleton": [ |
|||
[ |
|||
16, |
|||
14 |
|||
], |
|||
[ |
|||
14, |
|||
12 |
|||
], |
|||
[ |
|||
17, |
|||
15 |
|||
], |
|||
[ |
|||
15, |
|||
13 |
|||
], |
|||
[ |
|||
12, |
|||
13 |
|||
], |
|||
[ |
|||
6, |
|||
12 |
|||
], |
|||
[ |
|||
7, |
|||
13 |
|||
], |
|||
[ |
|||
6, |
|||
7 |
|||
], |
|||
[ |
|||
6, |
|||
8 |
|||
], |
|||
[ |
|||
7, |
|||
9 |
|||
], |
|||
[ |
|||
8, |
|||
10 |
|||
], |
|||
[ |
|||
9, |
|||
11 |
|||
], |
|||
[ |
|||
2, |
|||
3 |
|||
], |
|||
[ |
|||
1, |
|||
2 |
|||
], |
|||
[ |
|||
1, |
|||
3 |
|||
], |
|||
[ |
|||
2, |
|||
4 |
|||
], |
|||
[ |
|||
3, |
|||
5 |
|||
], |
|||
[ |
|||
4, |
|||
6 |
|||
], |
|||
[ |
|||
5, |
|||
7 |
|||
] |
|||
] |
|||
} |
|||
], |
|||
"images": [ |
|||
{ |
|||
"file_name": "1.png", |
|||
"height": 766, |
|||
"width": 1022, |
|||
"id": 1 |
|||
}, |
|||
{ |
|||
"file_name": "2.png", |
|||
"height": 753, |
|||
"width": 1006, |
|||
"id": 2 |
|||
}, |
|||
{ |
|||
"file_name": "3.png", |
|||
"height": 754, |
|||
"width": 1009, |
|||
"id": 3 |
|||
}, |
|||
{ |
|||
"file_name": "4.png", |
|||
"height": 754, |
|||
"width": 1003, |
|||
"id": 4 |
|||
}, |
|||
{ |
|||
"file_name": "5.png", |
|||
"height": 750, |
|||
"width": 1007, |
|||
"id": 5 |
|||
}, |
|||
{ |
|||
"file_name": "6.png", |
|||
"height": 756, |
|||
"width": 1008, |
|||
"id": 6 |
|||
}, |
|||
{ |
|||
"file_name": "7.png", |
|||
"height": 754, |
|||
"width": 1001, |
|||
"id": 7 |
|||
}, |
|||
{ |
|||
"file_name": "8.png", |
|||
"height": 757, |
|||
"width": 1008, |
|||
"id": 8 |
|||
} |
|||
], |
|||
"annotations": [ |
|||
{ |
|||
"image_id": 1, |
|||
"bbox": [ |
|||
361, |
|||
268, |
|||
209, |
|||
390 |
|||
], |
|||
"category_id": 1, |
|||
"id": 1 |
|||
}, |
|||
{ |
|||
"image_id": 2, |
|||
"bbox": [ |
|||
422, |
|||
260, |
|||
136, |
|||
399 |
|||
], |
|||
"category_id": 1, |
|||
"id": 2 |
|||
}, |
|||
{ |
|||
"image_id": 3, |
|||
"bbox": [ |
|||
423, |
|||
251, |
|||
205, |
|||
432 |
|||
], |
|||
"category_id": 1, |
|||
"id": 3 |
|||
}, |
|||
{ |
|||
"image_id": 4, |
|||
"bbox": [ |
|||
501, |
|||
288, |
|||
145, |
|||
388 |
|||
], |
|||
"category_id": 1, |
|||
"id": 4 |
|||
}, |
|||
{ |
|||
"image_id": 5, |
|||
"bbox": [ |
|||
343, |
|||
249, |
|||
233, |
|||
409 |
|||
], |
|||
"category_id": 1, |
|||
"id": 5 |
|||
}, |
|||
{ |
|||
"image_id": 6, |
|||
"bbox": [ |
|||
500, |
|||
275, |
|||
155, |
|||
405 |
|||
], |
|||
"category_id": 1, |
|||
"id": 6 |
|||
}, |
|||
{ |
|||
"image_id": 7, |
|||
"bbox": [ |
|||
417, |
|||
252, |
|||
150, |
|||
413 |
|||
], |
|||
"category_id": 1, |
|||
"id": 7 |
|||
}, |
|||
{ |
|||
"image_id": 8, |
|||
"bbox": [ |
|||
425, |
|||
220, |
|||
216, |
|||
470 |
|||
], |
|||
"category_id": 1, |
|||
"id": 8 |
|||
} |
|||
] |
|||
} |
|||
@ -0,0 +1,212 @@ |
|||
{ |
|||
"info": { |
|||
"description": "For testing hengdian dataset only.", |
|||
"year": 2024, |
|||
"date_created": "2020/06/20" |
|||
}, |
|||
"licenses": [], |
|||
"categories": [ |
|||
{ |
|||
"supercategory": "person", |
|||
"id": 1, |
|||
"name": "person", |
|||
"keypoints": [ |
|||
"nose", |
|||
"left_eye", |
|||
"right_eye", |
|||
"left_ear", |
|||
"right_ear", |
|||
"left_shoulder", |
|||
"right_shoulder", |
|||
"left_elbow", |
|||
"right_elbow", |
|||
"left_wrist", |
|||
"right_wrist", |
|||
"left_hip", |
|||
"right_hip", |
|||
"left_knee", |
|||
"right_knee", |
|||
"left_ankle", |
|||
"right_ankle" |
|||
], |
|||
"skeleton": [ |
|||
[ |
|||
16, |
|||
14 |
|||
], |
|||
[ |
|||
14, |
|||
12 |
|||
], |
|||
[ |
|||
17, |
|||
15 |
|||
], |
|||
[ |
|||
15, |
|||
13 |
|||
], |
|||
[ |
|||
12, |
|||
13 |
|||
], |
|||
[ |
|||
6, |
|||
12 |
|||
], |
|||
[ |
|||
7, |
|||
13 |
|||
], |
|||
[ |
|||
6, |
|||
7 |
|||
], |
|||
[ |
|||
6, |
|||
8 |
|||
], |
|||
[ |
|||
7, |
|||
9 |
|||
], |
|||
[ |
|||
8, |
|||
10 |
|||
], |
|||
[ |
|||
9, |
|||
11 |
|||
], |
|||
[ |
|||
2, |
|||
3 |
|||
], |
|||
[ |
|||
1, |
|||
2 |
|||
], |
|||
[ |
|||
1, |
|||
3 |
|||
], |
|||
[ |
|||
2, |
|||
4 |
|||
], |
|||
[ |
|||
3, |
|||
5 |
|||
], |
|||
[ |
|||
4, |
|||
6 |
|||
], |
|||
[ |
|||
5, |
|||
7 |
|||
] |
|||
] |
|||
} |
|||
], |
|||
"images": [ |
|||
{ |
|||
"file_name": "1.png", |
|||
"height": 766, |
|||
"width": 1022, |
|||
"id": 1 |
|||
}, |
|||
{ |
|||
"file_name": "2.png", |
|||
"height": 753, |
|||
"width": 1006, |
|||
"id": 2 |
|||
}, |
|||
{ |
|||
"file_name": "3.png", |
|||
"height": 754, |
|||
"width": 1009, |
|||
"id": 3 |
|||
}, |
|||
{ |
|||
"file_name": "4.png", |
|||
"height": 754, |
|||
"width": 1003, |
|||
"id": 4 |
|||
}, |
|||
{ |
|||
"file_name": "5.png", |
|||
"height": 750, |
|||
"width": 1007, |
|||
"id": 5 |
|||
}, |
|||
{ |
|||
"file_name": "6.png", |
|||
"height": 756, |
|||
"width": 1008, |
|||
"id": 6 |
|||
}, |
|||
{ |
|||
"file_name": "7.png", |
|||
"height": 754, |
|||
"width": 1001, |
|||
"id": 7 |
|||
}, |
|||
{ |
|||
"file_name": "8.png", |
|||
"height": 757, |
|||
"width": 1008, |
|||
"id": 8 |
|||
} |
|||
], |
|||
"annotations": [ |
|||
{ |
|||
"image_id": 1, |
|||
"bbox": [0, 0, 1022, 766], |
|||
"category_id": 1, |
|||
"id": 1 |
|||
}, |
|||
{ |
|||
"image_id": 2, |
|||
"bbox": [0, 0, 1006, 753], |
|||
"category_id": 1, |
|||
"id": 2 |
|||
}, |
|||
{ |
|||
"image_id": 3, |
|||
"bbox": [0, 0, 1009, 754], |
|||
"category_id": 1, |
|||
"id": 3 |
|||
}, |
|||
{ |
|||
"image_id": 4, |
|||
"bbox": [0, 0, 1003, 754], |
|||
"category_id": 1, |
|||
"id": 4 |
|||
}, |
|||
{ |
|||
"image_id": 5, |
|||
"bbox": [0, 0, 1007, 750], |
|||
"category_id": 1, |
|||
"id": 5 |
|||
}, |
|||
{ |
|||
"image_id": 6, |
|||
"bbox": [0, 0, 1008, 756], |
|||
"category_id": 1, |
|||
"id": 6 |
|||
}, |
|||
{ |
|||
"image_id": 7, |
|||
"bbox": [0, 0, 1001, 754], |
|||
"category_id": 1, |
|||
"id": 7 |
|||
}, |
|||
{ |
|||
"image_id": 8, |
|||
"bbox": [0, 0, 1008, 757], |
|||
"category_id": 1, |
|||
"id": 8 |
|||
} |
|||
] |
|||
} |
|||