You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

153 lines
4.7 KiB

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import numpy as np
import torch
from mmpose.core.optimizer import build_optimizers
from mmpose.models.detectors.mesh import ParametricMesh
from tests.utils.mesh_utils import generate_smpl_weight_file
def test_parametric_mesh_forward():
"""Test parametric mesh forward."""
tmpdir = tempfile.TemporaryDirectory()
# generate weight file for SMPL model.
generate_smpl_weight_file(tmpdir.name)
# Test ParametricMesh without discriminator
model_cfg = dict(
pretrained=None,
backbone=dict(type='ResNet', depth=50),
mesh_head=dict(
type='HMRMeshHead',
in_channels=2048,
smpl_mean_params='tests/data/smpl/smpl_mean_params.npz'),
disc=None,
smpl=dict(
type='SMPL',
smpl_path=tmpdir.name,
joints_regressor=osp.join(tmpdir.name,
'test_joint_regressor.npy')),
train_cfg=dict(disc_step=1),
test_cfg=dict(
flip_test=False,
post_process='default',
shift_heatmap=True,
modulate_kernel=11),
loss_mesh=dict(
type='MeshLoss',
joints_2d_loss_weight=1,
joints_3d_loss_weight=1,
vertex_loss_weight=1,
smpl_pose_loss_weight=1,
smpl_beta_loss_weight=1,
focal_length=5000,
img_res=256),
loss_gan=None)
detector = ParametricMesh(**model_cfg)
detector.init_weights()
optimizers_config = dict(generator=dict(type='Adam', lr=0.0001))
optims = build_optimizers(detector, optimizers_config)
input_shape = (1, 3, 256, 256)
mm_inputs = _demo_mm_inputs(input_shape)
# Test forward train
output = detector.train_step(mm_inputs, optims)
assert isinstance(output, dict)
# Test forward test
with torch.no_grad():
output = detector.val_step(data_batch=mm_inputs)
assert isinstance(output, dict)
imgs = mm_inputs.pop('img')
img_metas = mm_inputs.pop('img_metas')
output = detector.forward(imgs, img_metas=img_metas, return_loss=False)
assert isinstance(output, dict)
# Test ParametricMesh with discriminator
model_cfg['disc'] = dict()
model_cfg['loss_gan'] = dict(
type='GANLoss',
gan_type='lsgan',
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=1)
optimizers_config['discriminator'] = dict(type='Adam', lr=0.0001)
detector = ParametricMesh(**model_cfg)
detector.init_weights()
optims = build_optimizers(detector, optimizers_config)
input_shape = (1, 3, 256, 256)
mm_inputs = _demo_mm_inputs(input_shape)
# Test forward train
output = detector.train_step(mm_inputs, optims)
assert isinstance(output, dict)
# Test forward test
with torch.no_grad():
output = detector.val_step(data_batch=mm_inputs)
assert isinstance(output, dict)
imgs = mm_inputs.pop('img')
img_metas = mm_inputs.pop('img_metas')
output = detector.forward(imgs, img_metas=img_metas, return_loss=False)
assert isinstance(output, dict)
_ = detector.forward_dummy(imgs)
tmpdir.cleanup()
def _demo_mm_inputs(input_shape=(1, 3, 256, 256)):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
joints_2d = np.zeros([N, 24, 2])
joints_2d_visible = np.ones([N, 24, 1])
joints_3d = np.zeros([N, 24, 3])
joints_3d_visible = np.ones([N, 24, 1])
pose = np.zeros([N, 72])
beta = np.zeros([N, 10])
has_smpl = np.ones([N])
mosh_theta = np.zeros([N, 3 + 72 + 10])
img_metas = [{
'img_shape': (H, W, C),
'center': np.array([W / 2, H / 2]),
'scale': np.array([0.5, 0.5]),
'bbox_score': 1.0,
'flip_pairs': [],
'inference_channel': np.arange(17),
'image_file': '<demo>.png',
} for _ in range(N)]
mm_inputs = {
'img': torch.FloatTensor(imgs).requires_grad_(True),
'joints_2d': torch.FloatTensor(joints_2d),
'joints_2d_visible': torch.FloatTensor(joints_2d_visible),
'joints_3d': torch.FloatTensor(joints_3d),
'joints_3d_visible': torch.FloatTensor(joints_3d_visible),
'pose': torch.FloatTensor(pose),
'beta': torch.FloatTensor(beta),
'has_smpl': torch.FloatTensor(has_smpl),
'img_metas': img_metas,
'mosh_theta': torch.FloatTensor(mosh_theta)
}
return mm_inputs