You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.8 KiB
153 lines
5.8 KiB
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from ..builder import LOSSES
|
|
|
|
|
|
@LOSSES.register_module()
|
|
class JointsMSELoss(nn.Module):
|
|
"""MSE loss for heatmaps.
|
|
|
|
Args:
|
|
use_target_weight (bool): Option to use weighted MSE loss.
|
|
Different joint types may have different target weights.
|
|
loss_weight (float): Weight of the loss. Default: 1.0.
|
|
"""
|
|
|
|
def __init__(self, use_target_weight=False, loss_weight=1.):
|
|
super().__init__()
|
|
self.criterion = nn.MSELoss()
|
|
self.use_target_weight = use_target_weight
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self, output, target, target_weight):
|
|
"""Forward function."""
|
|
batch_size = output.size(0)
|
|
num_joints = output.size(1)
|
|
|
|
heatmaps_pred = output.reshape(
|
|
(batch_size, num_joints, -1)).split(1, 1)
|
|
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
|
|
|
|
loss = 0.
|
|
|
|
for idx in range(num_joints):
|
|
heatmap_pred = heatmaps_pred[idx].squeeze(1)
|
|
heatmap_gt = heatmaps_gt[idx].squeeze(1)
|
|
if self.use_target_weight:
|
|
loss += self.criterion(heatmap_pred * target_weight[:, idx],
|
|
heatmap_gt * target_weight[:, idx])
|
|
else:
|
|
loss += self.criterion(heatmap_pred, heatmap_gt)
|
|
|
|
return loss / num_joints * self.loss_weight
|
|
|
|
|
|
@LOSSES.register_module()
|
|
class CombinedTargetMSELoss(nn.Module):
|
|
"""MSE loss for combined target.
|
|
CombinedTarget: The combination of classification target
|
|
(response map) and regression target (offset map).
|
|
Paper ref: Huang et al. The Devil is in the Details: Delving into
|
|
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
|
|
|
|
Args:
|
|
use_target_weight (bool): Option to use weighted MSE loss.
|
|
Different joint types may have different target weights.
|
|
loss_weight (float): Weight of the loss. Default: 1.0.
|
|
"""
|
|
|
|
def __init__(self, use_target_weight, loss_weight=1.):
|
|
super().__init__()
|
|
self.criterion = nn.MSELoss(reduction='mean')
|
|
self.use_target_weight = use_target_weight
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self, output, target, target_weight):
|
|
batch_size = output.size(0)
|
|
num_channels = output.size(1)
|
|
heatmaps_pred = output.reshape(
|
|
(batch_size, num_channels, -1)).split(1, 1)
|
|
heatmaps_gt = target.reshape(
|
|
(batch_size, num_channels, -1)).split(1, 1)
|
|
loss = 0.
|
|
num_joints = num_channels // 3
|
|
for idx in range(num_joints):
|
|
heatmap_pred = heatmaps_pred[idx * 3].squeeze()
|
|
heatmap_gt = heatmaps_gt[idx * 3].squeeze()
|
|
offset_x_pred = heatmaps_pred[idx * 3 + 1].squeeze()
|
|
offset_x_gt = heatmaps_gt[idx * 3 + 1].squeeze()
|
|
offset_y_pred = heatmaps_pred[idx * 3 + 2].squeeze()
|
|
offset_y_gt = heatmaps_gt[idx * 3 + 2].squeeze()
|
|
if self.use_target_weight:
|
|
heatmap_pred = heatmap_pred * target_weight[:, idx]
|
|
heatmap_gt = heatmap_gt * target_weight[:, idx]
|
|
# classification loss
|
|
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
|
|
# regression loss
|
|
loss += 0.5 * self.criterion(heatmap_gt * offset_x_pred,
|
|
heatmap_gt * offset_x_gt)
|
|
loss += 0.5 * self.criterion(heatmap_gt * offset_y_pred,
|
|
heatmap_gt * offset_y_gt)
|
|
return loss / num_joints * self.loss_weight
|
|
|
|
|
|
@LOSSES.register_module()
|
|
class JointsOHKMMSELoss(nn.Module):
|
|
"""MSE loss with online hard keypoint mining.
|
|
|
|
Args:
|
|
use_target_weight (bool): Option to use weighted MSE loss.
|
|
Different joint types may have different target weights.
|
|
topk (int): Only top k joint losses are kept.
|
|
loss_weight (float): Weight of the loss. Default: 1.0.
|
|
"""
|
|
|
|
def __init__(self, use_target_weight=False, topk=8, loss_weight=1.):
|
|
super().__init__()
|
|
assert topk > 0
|
|
self.criterion = nn.MSELoss(reduction='none')
|
|
self.use_target_weight = use_target_weight
|
|
self.topk = topk
|
|
self.loss_weight = loss_weight
|
|
|
|
def _ohkm(self, loss):
|
|
"""Online hard keypoint mining."""
|
|
ohkm_loss = 0.
|
|
N = len(loss)
|
|
for i in range(N):
|
|
sub_loss = loss[i]
|
|
_, topk_idx = torch.topk(
|
|
sub_loss, k=self.topk, dim=0, sorted=False)
|
|
tmp_loss = torch.gather(sub_loss, 0, topk_idx)
|
|
ohkm_loss += torch.sum(tmp_loss) / self.topk
|
|
ohkm_loss /= N
|
|
return ohkm_loss
|
|
|
|
def forward(self, output, target, target_weight):
|
|
"""Forward function."""
|
|
batch_size = output.size(0)
|
|
num_joints = output.size(1)
|
|
if num_joints < self.topk:
|
|
raise ValueError(f'topk ({self.topk}) should not '
|
|
f'larger than num_joints ({num_joints}).')
|
|
heatmaps_pred = output.reshape(
|
|
(batch_size, num_joints, -1)).split(1, 1)
|
|
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
|
|
|
|
losses = []
|
|
for idx in range(num_joints):
|
|
heatmap_pred = heatmaps_pred[idx].squeeze(1)
|
|
heatmap_gt = heatmaps_gt[idx].squeeze(1)
|
|
if self.use_target_weight:
|
|
losses.append(
|
|
self.criterion(heatmap_pred * target_weight[:, idx],
|
|
heatmap_gt * target_weight[:, idx]))
|
|
else:
|
|
losses.append(self.criterion(heatmap_pred, heatmap_gt))
|
|
|
|
losses = [loss.mean(dim=1).unsqueeze(dim=1) for loss in losses]
|
|
losses = torch.cat(losses, dim=1)
|
|
|
|
return self._ohkm(losses) * self.loss_weight
|
|
|