You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

122 lines
3.7 KiB

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmpose.models.detectors import AssociativeEmbedding
def test_ae_forward():
model_cfg = dict(
type='AssociativeEmbedding',
pretrained=None,
backbone=dict(type='ResNet', depth=18),
keypoint_head=dict(
type='AESimpleHead',
in_channels=512,
num_joints=17,
num_deconv_layers=0,
tag_per_joint=True,
with_ae_loss=[True],
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(
type='MultiLossFactory',
num_joints=17,
num_stages=1,
ae_loss_type='exp',
with_ae_loss=[True],
push_loss_factor=[0.001],
pull_loss_factor=[0.001],
with_heatmaps_loss=[True],
heatmaps_loss_factor=[1.0])),
train_cfg=dict(),
test_cfg=dict(
num_joints=17,
max_num_people=30,
scale_factor=[1],
with_heatmaps=[True],
with_ae=[True],
project2image=True,
nms_kernel=5,
nms_padding=2,
tag_per_joint=True,
detection_threshold=0.1,
tag_threshold=1,
use_detection_val=True,
ignore_too_much=False,
adjust=True,
refine=True,
soft_nms=False,
flip_test=True,
post_process=True,
shift_heatmap=True,
use_gt_bbox=True,
flip_pairs=[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
[13, 14], [15, 16]],
))
detector = AssociativeEmbedding(model_cfg['backbone'],
model_cfg['keypoint_head'],
model_cfg['train_cfg'],
model_cfg['test_cfg'],
model_cfg['pretrained'])
detector.init_weights()
input_shape = (1, 3, 256, 256)
mm_inputs = _demo_mm_inputs(input_shape)
imgs = mm_inputs.pop('imgs')
target = mm_inputs.pop('target')
mask = mm_inputs.pop('mask')
joints = mm_inputs.pop('joints')
img_metas = mm_inputs.pop('img_metas')
# Test forward train
losses = detector.forward(
imgs, target, mask, joints, img_metas, return_loss=True)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
_ = detector.forward(imgs, img_metas=img_metas, return_loss=False)
_ = detector.forward_dummy(imgs)
def _demo_mm_inputs(input_shape=(1, 3, 256, 256)):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
target = np.zeros([N, 17, H // 32, W // 32], dtype=np.float32)
mask = np.ones([N, H // 32, W // 32], dtype=np.float32)
joints = np.zeros([N, 30, 17, 2], dtype=np.float32)
img_metas = [{
'image_file':
'test.jpg',
'aug_data': [torch.zeros(1, 3, 256, 256)],
'test_scale_factor': [1],
'base_size': (256, 256),
'center':
np.array([128, 128]),
'scale':
np.array([1.28, 1.28]),
'flip_index':
[0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
} for _ in range(N)]
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'target': [torch.FloatTensor(target)],
'mask': [torch.FloatTensor(mask)],
'joints': [torch.FloatTensor(joints)],
'img_metas': img_metas
}
return mm_inputs