You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
6.3 KiB
210 lines
6.3 KiB
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
import tempfile
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
from mmpose.apis import (extract_pose_sequence, inference_interhand_3d_model,
|
|
inference_mesh_model, inference_pose_lifter_model,
|
|
init_pose_model, vis_3d_mesh_result,
|
|
vis_3d_pose_result)
|
|
from mmpose.datasets.dataset_info import DatasetInfo
|
|
from tests.utils.mesh_utils import generate_smpl_weight_file
|
|
|
|
|
|
def test_pose_lifter_demo():
|
|
# H36M demo
|
|
pose_model = init_pose_model(
|
|
'configs/body/3d_kpt_sview_rgb_img/pose_lift/'
|
|
'h36m/simplebaseline3d_h36m.py',
|
|
None,
|
|
device='cpu')
|
|
|
|
pose_det_result = {
|
|
'keypoints': np.zeros((17, 3)),
|
|
'bbox': [50, 50, 50, 50],
|
|
'track_id': 0,
|
|
'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
|
|
}
|
|
|
|
pose_results_2d = [[pose_det_result]]
|
|
|
|
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
|
|
|
|
pose_results_2d = extract_pose_sequence(
|
|
pose_results_2d, frame_idx=0, causal=False, seq_len=1, step=1)
|
|
|
|
_ = inference_pose_lifter_model(
|
|
pose_model,
|
|
pose_results_2d,
|
|
dataset_info=dataset_info,
|
|
with_track_id=False)
|
|
|
|
pose_lift_results = inference_pose_lifter_model(
|
|
pose_model,
|
|
pose_results_2d,
|
|
dataset_info=dataset_info,
|
|
with_track_id=True)
|
|
|
|
for res in pose_lift_results:
|
|
res['title'] = 'title'
|
|
vis_3d_pose_result(
|
|
pose_model,
|
|
pose_lift_results,
|
|
img=pose_results_2d[0][0]['image_name'],
|
|
dataset_info=dataset_info)
|
|
|
|
# test special cases
|
|
# Empty 2D results
|
|
_ = inference_pose_lifter_model(
|
|
pose_model, [[]], dataset_info=dataset_info, with_track_id=False)
|
|
|
|
if torch.cuda.is_available():
|
|
_ = inference_pose_lifter_model(
|
|
pose_model.cuda(),
|
|
pose_results_2d,
|
|
dataset_info=dataset_info,
|
|
with_track_id=False)
|
|
|
|
# test videopose3d
|
|
pose_model = init_pose_model(
|
|
'configs/body/3d_kpt_sview_rgb_vid/video_pose_lift/h36m/'
|
|
'videopose3d_h36m_243frames_fullconv_supervised_cpn_ft.py',
|
|
None,
|
|
device='cpu')
|
|
|
|
pose_det_result_0 = {
|
|
'keypoints': np.ones((17, 3)),
|
|
'bbox': [50, 50, 100, 100],
|
|
'track_id': 0,
|
|
'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
|
|
}
|
|
pose_det_result_1 = {
|
|
'keypoints': np.ones((17, 3)),
|
|
'bbox': [50, 50, 100, 100],
|
|
'track_id': 1,
|
|
'image_name': 'tests/data/h36m/S5_SittingDown.54138969_002061.jpg',
|
|
}
|
|
pose_det_result_2 = {
|
|
'keypoints': np.ones((17, 3)),
|
|
'bbox': [50, 50, 100, 100],
|
|
'track_id': 2,
|
|
'image_name': 'tests/data/h36m/S7_Greeting.55011271_000396.jpg',
|
|
}
|
|
|
|
pose_results_2d = [[pose_det_result_0], [pose_det_result_1],
|
|
[pose_det_result_2]]
|
|
|
|
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
|
|
|
|
seq_len = pose_model.cfg.test_data_cfg.seq_len
|
|
pose_results_2d_seq = extract_pose_sequence(
|
|
pose_results_2d, 1, causal=False, seq_len=seq_len, step=1)
|
|
|
|
pose_lift_results = inference_pose_lifter_model(
|
|
pose_model,
|
|
pose_results_2d_seq,
|
|
dataset_info=dataset_info,
|
|
with_track_id=True,
|
|
image_size=[1000, 1000],
|
|
norm_pose_2d=True)
|
|
|
|
for res in pose_lift_results:
|
|
res['title'] = 'title'
|
|
vis_3d_pose_result(
|
|
pose_model,
|
|
pose_lift_results,
|
|
img=pose_results_2d[0][0]['image_name'],
|
|
dataset_info=dataset_info,
|
|
)
|
|
|
|
|
|
def test_interhand3d_demo():
|
|
# H36M demo
|
|
pose_model = init_pose_model(
|
|
'configs/hand/3d_kpt_sview_rgb_img/internet/interhand3d/'
|
|
'res50_interhand3d_all_256x256.py',
|
|
None,
|
|
device='cpu')
|
|
|
|
image_name = 'tests/data/interhand2.6m/image2017.jpg'
|
|
det_result = {
|
|
'image_name': image_name,
|
|
'bbox': [50, 50, 50, 50], # bbox format is 'xywh'
|
|
'camera_param': None,
|
|
'keypoints_3d_gt': None
|
|
}
|
|
det_results = [det_result]
|
|
dataset = pose_model.cfg.data['test']['type']
|
|
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
|
|
|
|
pose_results = inference_interhand_3d_model(
|
|
pose_model, image_name, det_results, dataset=dataset)
|
|
|
|
for res in pose_results:
|
|
res['title'] = 'title'
|
|
|
|
vis_3d_pose_result(
|
|
pose_model,
|
|
result=pose_results,
|
|
img=det_results[0]['image_name'],
|
|
dataset_info=dataset_info,
|
|
)
|
|
|
|
# test special cases
|
|
# Empty det results
|
|
_ = inference_interhand_3d_model(
|
|
pose_model, image_name, [], dataset=dataset)
|
|
|
|
if torch.cuda.is_available():
|
|
_ = inference_interhand_3d_model(
|
|
pose_model.cuda(), image_name, det_results, dataset=dataset)
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
_ = inference_interhand_3d_model(
|
|
pose_model, image_name, det_results, dataset='test')
|
|
|
|
|
|
def test_body_mesh_demo():
|
|
# H36M demo
|
|
config = 'configs/body/3d_mesh_sview_rgb_img/hmr' \
|
|
'/mixed/res50_mixed_224x224.py'
|
|
config = mmcv.Config.fromfile(config)
|
|
config.model.mesh_head.smpl_mean_params = \
|
|
'tests/data/smpl/smpl_mean_params.npz'
|
|
|
|
pose_model = None
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
config.model.smpl.smpl_path = tmpdir
|
|
config.model.smpl.joints_regressor = osp.join(
|
|
tmpdir, 'test_joint_regressor.npy')
|
|
# generate weight file for SMPL model.
|
|
generate_smpl_weight_file(tmpdir)
|
|
pose_model = init_pose_model(config, device='cpu')
|
|
|
|
assert pose_model is not None, 'Fail to build pose model'
|
|
|
|
image_name = 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg'
|
|
det_result = {
|
|
'keypoints': np.zeros((17, 3)),
|
|
'bbox': [50, 50, 50, 50],
|
|
'image_name': image_name,
|
|
}
|
|
|
|
# make person bounding boxes
|
|
person_results = [det_result]
|
|
dataset = pose_model.cfg.data['test']['type']
|
|
|
|
# test a single image, with a list of bboxes
|
|
pose_results = inference_mesh_model(
|
|
pose_model,
|
|
image_name,
|
|
person_results,
|
|
bbox_thr=None,
|
|
format='xywh',
|
|
dataset=dataset)
|
|
|
|
vis_3d_mesh_result(pose_model, pose_results, image_name)
|
|
|