You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
4.8 KiB
176 lines
4.8 KiB
#!/usr/bin/env python
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import functools as func
|
|
import glob
|
|
import re
|
|
from os.path import basename, splitext
|
|
|
|
import numpy as np
|
|
import titlecase
|
|
|
|
|
|
def anchor(name):
|
|
return re.sub(r'-+', '-', re.sub(r'[^a-zA-Z0-9]', '-',
|
|
name.strip().lower())).strip('-')
|
|
|
|
|
|
# Count algorithms
|
|
|
|
files = sorted(glob.glob('topics/*.md'))
|
|
|
|
stats = []
|
|
|
|
for f in files:
|
|
with open(f, 'r') as content_file:
|
|
content = content_file.read()
|
|
|
|
# title
|
|
title = content.split('\n')[0].replace('#', '')
|
|
|
|
# count papers
|
|
papers = set(
|
|
(papertype, titlecase.titlecase(paper.lower().strip()))
|
|
for (papertype, paper) in re.findall(
|
|
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}',
|
|
content, re.DOTALL))
|
|
# paper links
|
|
revcontent = '\n'.join(list(reversed(content.splitlines())))
|
|
paperlinks = {}
|
|
for _, p in papers:
|
|
print(p)
|
|
paperlinks[p] = ', '.join(
|
|
((f'[{paperlink} ⇨]'
|
|
f'(topics/{splitext(basename(f))[0]}.html#{anchor(paperlink)})')
|
|
for paperlink in re.findall(
|
|
rf'\btitle\s*=\s*{{\s*{p}\s*}}.*?\n### (.*?)\s*[,;]?\s*\n',
|
|
revcontent, re.DOTALL | re.IGNORECASE)))
|
|
print(' ', paperlinks[p])
|
|
paperlist = '\n'.join(
|
|
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers))
|
|
# count configs
|
|
configs = set(x.lower().strip()
|
|
for x in re.findall(r'.*configs/.*\.py', content))
|
|
|
|
# count ckpts
|
|
ckpts = set(x.lower().strip()
|
|
for x in re.findall(r'https://download.*\.pth', content)
|
|
if 'mmpose' in x)
|
|
|
|
statsmsg = f"""
|
|
## [{title}]({f})
|
|
|
|
* 模型权重文件数量: {len(ckpts)}
|
|
* 配置文件数量: {len(configs)}
|
|
* 论文数量: {len(papers)}
|
|
{paperlist}
|
|
|
|
"""
|
|
|
|
stats.append((papers, configs, ckpts, statsmsg))
|
|
|
|
allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _, _ in stats])
|
|
allconfigs = func.reduce(lambda a, b: a.union(b), [c for _, c, _, _ in stats])
|
|
allckpts = func.reduce(lambda a, b: a.union(b), [c for _, _, c, _ in stats])
|
|
|
|
# Summarize
|
|
|
|
msglist = '\n'.join(x for _, _, _, x in stats)
|
|
papertypes, papercounts = np.unique([t for t, _ in allpapers],
|
|
return_counts=True)
|
|
countstr = '\n'.join(
|
|
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
|
|
|
|
modelzoo = f"""
|
|
# 概览
|
|
|
|
* 模型权重文件数量: {len(allckpts)}
|
|
* 配置文件数量: {len(allconfigs)}
|
|
* 论文数量: {len(allpapers)}
|
|
{countstr}
|
|
|
|
已支持的数据集详细信息请见 [数据集](datasets.md).
|
|
|
|
{msglist}
|
|
|
|
"""
|
|
|
|
with open('modelzoo.md', 'w') as f:
|
|
f.write(modelzoo)
|
|
|
|
# Count datasets
|
|
|
|
files = sorted(glob.glob('tasks/*.md'))
|
|
# files = sorted(glob.glob('docs/tasks/*.md'))
|
|
|
|
datastats = []
|
|
|
|
for f in files:
|
|
with open(f, 'r') as content_file:
|
|
content = content_file.read()
|
|
|
|
# title
|
|
title = content.split('\n')[0].replace('#', '')
|
|
|
|
# count papers
|
|
papers = set(
|
|
(papertype, titlecase.titlecase(paper.lower().strip()))
|
|
for (papertype, paper) in re.findall(
|
|
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}',
|
|
content, re.DOTALL))
|
|
# paper links
|
|
revcontent = '\n'.join(list(reversed(content.splitlines())))
|
|
paperlinks = {}
|
|
for _, p in papers:
|
|
print(p)
|
|
paperlinks[p] = ', '.join(
|
|
(f'[{p} ⇨](tasks/{splitext(basename(f))[0]}.html#{anchor(p)})'
|
|
for p in re.findall(
|
|
rf'\btitle\s*=\s*{{\s*{p}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n',
|
|
revcontent, re.DOTALL | re.IGNORECASE)))
|
|
print(' ', paperlinks[p])
|
|
paperlist = '\n'.join(
|
|
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers))
|
|
# count configs
|
|
configs = set(x.lower().strip()
|
|
for x in re.findall(r'https.*configs/.*\.py', content))
|
|
|
|
# count ckpts
|
|
ckpts = set(x.lower().strip()
|
|
for x in re.findall(r'https://download.*\.pth', content)
|
|
if 'mmpose' in x)
|
|
|
|
statsmsg = f"""
|
|
## [{title}]({f})
|
|
|
|
* 论文数量: {len(papers)}
|
|
{paperlist}
|
|
|
|
"""
|
|
|
|
datastats.append((papers, configs, ckpts, statsmsg))
|
|
|
|
alldatapapers = func.reduce(lambda a, b: a.union(b),
|
|
[p for p, _, _, _ in datastats])
|
|
|
|
# Summarize
|
|
|
|
msglist = '\n'.join(x for _, _, _, x in stats)
|
|
datamsglist = '\n'.join(x for _, _, _, x in datastats)
|
|
papertypes, papercounts = np.unique([t for t, _ in alldatapapers],
|
|
return_counts=True)
|
|
countstr = '\n'.join(
|
|
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
|
|
|
|
modelzoo = f"""
|
|
# 概览
|
|
|
|
* 论文数量: {len(alldatapapers)}
|
|
{countstr}
|
|
|
|
已支持的算法详细信息请见 [模型池](modelzoo.md).
|
|
|
|
{datamsglist}
|
|
"""
|
|
|
|
with open('datasets.md', 'w') as f:
|
|
f.write(modelzoo)
|
|
|