You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.4 KiB
162 lines
5.4 KiB
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
import random
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
from mmcv.parallel import collate
|
|
from mmcv.runner import get_dist_info
|
|
from mmcv.utils import Registry, build_from_cfg, is_seq_of
|
|
from mmcv.utils.parrots_wrapper import _get_dataloader
|
|
from torch.utils.data.dataset import ConcatDataset
|
|
|
|
from .samplers import DistributedSampler
|
|
|
|
if platform.system() != 'Windows':
|
|
# https://github.com/pytorch/pytorch/issues/973
|
|
import resource
|
|
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
|
|
base_soft_limit = rlimit[0]
|
|
hard_limit = rlimit[1]
|
|
soft_limit = min(max(4096, base_soft_limit), hard_limit)
|
|
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
|
|
|
|
DATASETS = Registry('dataset')
|
|
PIPELINES = Registry('pipeline')
|
|
|
|
|
|
def _concat_dataset(cfg, default_args=None):
|
|
types = cfg['type']
|
|
ann_files = cfg['ann_file']
|
|
img_prefixes = cfg.get('img_prefix', None)
|
|
dataset_infos = cfg.get('dataset_info', None)
|
|
|
|
num_joints = cfg['data_cfg'].get('num_joints', None)
|
|
dataset_channel = cfg['data_cfg'].get('dataset_channel', None)
|
|
|
|
datasets = []
|
|
num_dset = len(ann_files)
|
|
for i in range(num_dset):
|
|
cfg_copy = copy.deepcopy(cfg)
|
|
cfg_copy['ann_file'] = ann_files[i]
|
|
|
|
if isinstance(types, (list, tuple)):
|
|
cfg_copy['type'] = types[i]
|
|
if isinstance(img_prefixes, (list, tuple)):
|
|
cfg_copy['img_prefix'] = img_prefixes[i]
|
|
if isinstance(dataset_infos, (list, tuple)):
|
|
cfg_copy['dataset_info'] = dataset_infos[i]
|
|
|
|
if isinstance(num_joints, (list, tuple)):
|
|
cfg_copy['data_cfg']['num_joints'] = num_joints[i]
|
|
|
|
if is_seq_of(dataset_channel, list):
|
|
cfg_copy['data_cfg']['dataset_channel'] = dataset_channel[i]
|
|
|
|
datasets.append(build_dataset(cfg_copy, default_args))
|
|
|
|
return ConcatDataset(datasets)
|
|
|
|
|
|
def build_dataset(cfg, default_args=None):
|
|
"""Build a dataset from config dict.
|
|
|
|
Args:
|
|
cfg (dict): Config dict. It should at least contain the key "type".
|
|
default_args (dict, optional): Default initialization arguments.
|
|
Default: None.
|
|
|
|
Returns:
|
|
Dataset: The constructed dataset.
|
|
"""
|
|
from .dataset_wrappers import RepeatDataset
|
|
|
|
if isinstance(cfg, (list, tuple)):
|
|
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
|
|
elif cfg['type'] == 'ConcatDataset':
|
|
dataset = ConcatDataset(
|
|
[build_dataset(c, default_args) for c in cfg['datasets']])
|
|
elif cfg['type'] == 'RepeatDataset':
|
|
dataset = RepeatDataset(
|
|
build_dataset(cfg['dataset'], default_args), cfg['times'])
|
|
elif isinstance(cfg.get('ann_file'), (list, tuple)):
|
|
dataset = _concat_dataset(cfg, default_args)
|
|
else:
|
|
dataset = build_from_cfg(cfg, DATASETS, default_args)
|
|
return dataset
|
|
|
|
|
|
def build_dataloader(dataset,
|
|
samples_per_gpu,
|
|
workers_per_gpu,
|
|
num_gpus=1,
|
|
dist=True,
|
|
shuffle=True,
|
|
seed=None,
|
|
drop_last=True,
|
|
pin_memory=True,
|
|
**kwargs):
|
|
"""Build PyTorch DataLoader.
|
|
|
|
In distributed training, each GPU/process has a dataloader.
|
|
In non-distributed training, there is only one dataloader for all GPUs.
|
|
|
|
Args:
|
|
dataset (Dataset): A PyTorch dataset.
|
|
samples_per_gpu (int): Number of training samples on each GPU, i.e.,
|
|
batch size of each GPU.
|
|
workers_per_gpu (int): How many subprocesses to use for data loading
|
|
for each GPU.
|
|
num_gpus (int): Number of GPUs. Only used in non-distributed training.
|
|
dist (bool): Distributed training/test or not. Default: True.
|
|
shuffle (bool): Whether to shuffle the data at every epoch.
|
|
Default: True.
|
|
drop_last (bool): Whether to drop the last incomplete batch in epoch.
|
|
Default: True
|
|
pin_memory (bool): Whether to use pin_memory in DataLoader.
|
|
Default: True
|
|
kwargs: any keyword argument to be used to initialize DataLoader
|
|
|
|
Returns:
|
|
DataLoader: A PyTorch dataloader.
|
|
"""
|
|
rank, world_size = get_dist_info()
|
|
if dist:
|
|
sampler = DistributedSampler(
|
|
dataset, world_size, rank, shuffle=shuffle, seed=seed)
|
|
shuffle = False
|
|
batch_size = samples_per_gpu
|
|
num_workers = workers_per_gpu
|
|
else:
|
|
sampler = None
|
|
batch_size = num_gpus * samples_per_gpu
|
|
num_workers = num_gpus * workers_per_gpu
|
|
|
|
init_fn = partial(
|
|
worker_init_fn, num_workers=num_workers, rank=rank,
|
|
seed=seed) if seed is not None else None
|
|
|
|
_, DataLoader = _get_dataloader()
|
|
data_loader = DataLoader(
|
|
dataset,
|
|
batch_size=batch_size,
|
|
sampler=sampler,
|
|
num_workers=num_workers,
|
|
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
|
|
pin_memory=pin_memory,
|
|
shuffle=shuffle,
|
|
worker_init_fn=init_fn,
|
|
drop_last=drop_last,
|
|
**kwargs)
|
|
|
|
return data_loader
|
|
|
|
|
|
def worker_init_fn(worker_id, num_workers, rank, seed):
|
|
"""Init the random seed for various workers."""
|
|
# The seed of each worker equals to
|
|
# num_worker * rank + worker_id + user_seed
|
|
worker_seed = num_workers * rank + worker_id + seed
|
|
np.random.seed(worker_seed)
|
|
random.seed(worker_seed)
|
|
|