You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
6.8 KiB
212 lines
6.8 KiB
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
|
|
import torch.nn as nn
|
|
from mmcv.cnn import ConvModule, constant_init, normal_init
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from mmpose.utils import get_root_logger
|
|
from ..builder import BACKBONES
|
|
from .base_backbone import BaseBackbone
|
|
from .resnet import BasicBlock, ResLayer
|
|
from .utils import load_checkpoint
|
|
|
|
|
|
class HourglassModule(nn.Module):
|
|
"""Hourglass Module for HourglassNet backbone.
|
|
|
|
Generate module recursively and use BasicBlock as the base unit.
|
|
|
|
Args:
|
|
depth (int): Depth of current HourglassModule.
|
|
stage_channels (list[int]): Feature channels of sub-modules in current
|
|
and follow-up HourglassModule.
|
|
stage_blocks (list[int]): Number of sub-modules stacked in current and
|
|
follow-up HourglassModule.
|
|
norm_cfg (dict): Dictionary to construct and config norm layer.
|
|
"""
|
|
|
|
def __init__(self,
|
|
depth,
|
|
stage_channels,
|
|
stage_blocks,
|
|
norm_cfg=dict(type='BN', requires_grad=True)):
|
|
# Protect mutable default arguments
|
|
norm_cfg = copy.deepcopy(norm_cfg)
|
|
super().__init__()
|
|
|
|
self.depth = depth
|
|
|
|
cur_block = stage_blocks[0]
|
|
next_block = stage_blocks[1]
|
|
|
|
cur_channel = stage_channels[0]
|
|
next_channel = stage_channels[1]
|
|
|
|
self.up1 = ResLayer(
|
|
BasicBlock, cur_block, cur_channel, cur_channel, norm_cfg=norm_cfg)
|
|
|
|
self.low1 = ResLayer(
|
|
BasicBlock,
|
|
cur_block,
|
|
cur_channel,
|
|
next_channel,
|
|
stride=2,
|
|
norm_cfg=norm_cfg)
|
|
|
|
if self.depth > 1:
|
|
self.low2 = HourglassModule(depth - 1, stage_channels[1:],
|
|
stage_blocks[1:])
|
|
else:
|
|
self.low2 = ResLayer(
|
|
BasicBlock,
|
|
next_block,
|
|
next_channel,
|
|
next_channel,
|
|
norm_cfg=norm_cfg)
|
|
|
|
self.low3 = ResLayer(
|
|
BasicBlock,
|
|
cur_block,
|
|
next_channel,
|
|
cur_channel,
|
|
norm_cfg=norm_cfg,
|
|
downsample_first=False)
|
|
|
|
self.up2 = nn.Upsample(scale_factor=2)
|
|
|
|
def forward(self, x):
|
|
"""Model forward function."""
|
|
up1 = self.up1(x)
|
|
low1 = self.low1(x)
|
|
low2 = self.low2(low1)
|
|
low3 = self.low3(low2)
|
|
up2 = self.up2(low3)
|
|
return up1 + up2
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class HourglassNet(BaseBackbone):
|
|
"""HourglassNet backbone.
|
|
|
|
Stacked Hourglass Networks for Human Pose Estimation.
|
|
More details can be found in the `paper
|
|
<https://arxiv.org/abs/1603.06937>`__ .
|
|
|
|
Args:
|
|
downsample_times (int): Downsample times in a HourglassModule.
|
|
num_stacks (int): Number of HourglassModule modules stacked,
|
|
1 for Hourglass-52, 2 for Hourglass-104.
|
|
stage_channels (list[int]): Feature channel of each sub-module in a
|
|
HourglassModule.
|
|
stage_blocks (list[int]): Number of sub-modules stacked in a
|
|
HourglassModule.
|
|
feat_channel (int): Feature channel of conv after a HourglassModule.
|
|
norm_cfg (dict): Dictionary to construct and config norm layer.
|
|
|
|
Example:
|
|
>>> from mmpose.models import HourglassNet
|
|
>>> import torch
|
|
>>> self = HourglassNet()
|
|
>>> self.eval()
|
|
>>> inputs = torch.rand(1, 3, 511, 511)
|
|
>>> level_outputs = self.forward(inputs)
|
|
>>> for level_output in level_outputs:
|
|
... print(tuple(level_output.shape))
|
|
(1, 256, 128, 128)
|
|
(1, 256, 128, 128)
|
|
"""
|
|
|
|
def __init__(self,
|
|
downsample_times=5,
|
|
num_stacks=2,
|
|
stage_channels=(256, 256, 384, 384, 384, 512),
|
|
stage_blocks=(2, 2, 2, 2, 2, 4),
|
|
feat_channel=256,
|
|
norm_cfg=dict(type='BN', requires_grad=True)):
|
|
# Protect mutable default arguments
|
|
norm_cfg = copy.deepcopy(norm_cfg)
|
|
super().__init__()
|
|
|
|
self.num_stacks = num_stacks
|
|
assert self.num_stacks >= 1
|
|
assert len(stage_channels) == len(stage_blocks)
|
|
assert len(stage_channels) > downsample_times
|
|
|
|
cur_channel = stage_channels[0]
|
|
|
|
self.stem = nn.Sequential(
|
|
ConvModule(3, 128, 7, padding=3, stride=2, norm_cfg=norm_cfg),
|
|
ResLayer(BasicBlock, 1, 128, 256, stride=2, norm_cfg=norm_cfg))
|
|
|
|
self.hourglass_modules = nn.ModuleList([
|
|
HourglassModule(downsample_times, stage_channels, stage_blocks)
|
|
for _ in range(num_stacks)
|
|
])
|
|
|
|
self.inters = ResLayer(
|
|
BasicBlock,
|
|
num_stacks - 1,
|
|
cur_channel,
|
|
cur_channel,
|
|
norm_cfg=norm_cfg)
|
|
|
|
self.conv1x1s = nn.ModuleList([
|
|
ConvModule(
|
|
cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
|
|
for _ in range(num_stacks - 1)
|
|
])
|
|
|
|
self.out_convs = nn.ModuleList([
|
|
ConvModule(
|
|
cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg)
|
|
for _ in range(num_stacks)
|
|
])
|
|
|
|
self.remap_convs = nn.ModuleList([
|
|
ConvModule(
|
|
feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
|
|
for _ in range(num_stacks - 1)
|
|
])
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def init_weights(self, pretrained=None):
|
|
"""Initialize the weights in backbone.
|
|
|
|
Args:
|
|
pretrained (str, optional): Path to pre-trained weights.
|
|
Defaults to None.
|
|
"""
|
|
if isinstance(pretrained, str):
|
|
logger = get_root_logger()
|
|
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
|
elif pretrained is None:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
normal_init(m, std=0.001)
|
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
|
|
constant_init(m, 1)
|
|
else:
|
|
raise TypeError('pretrained must be a str or None')
|
|
|
|
def forward(self, x):
|
|
"""Model forward function."""
|
|
inter_feat = self.stem(x)
|
|
out_feats = []
|
|
|
|
for ind in range(self.num_stacks):
|
|
single_hourglass = self.hourglass_modules[ind]
|
|
out_conv = self.out_convs[ind]
|
|
|
|
hourglass_feat = single_hourglass(inter_feat)
|
|
out_feat = out_conv(hourglass_feat)
|
|
out_feats.append(out_feat)
|
|
|
|
if ind < self.num_stacks - 1:
|
|
inter_feat = self.conv1x1s[ind](
|
|
inter_feat) + self.remap_convs[ind](
|
|
out_feat)
|
|
inter_feat = self.inters[ind](self.relu(inter_feat))
|
|
|
|
return out_feats
|
|
|