You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.2 KiB
186 lines
6.2 KiB
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmcv.cnn import ConvModule, constant_init, normal_init
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from mmpose.utils import get_root_logger
|
|
from ..builder import BACKBONES
|
|
from .base_backbone import BaseBackbone
|
|
from .utils import load_checkpoint
|
|
|
|
|
|
class CpmBlock(nn.Module):
|
|
"""CpmBlock for Convolutional Pose Machine.
|
|
|
|
Args:
|
|
in_channels (int): Input channels of this block.
|
|
channels (list): Output channels of each conv module.
|
|
kernels (list): Kernel sizes of each conv module.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
channels=(128, 128, 128),
|
|
kernels=(11, 11, 11),
|
|
norm_cfg=None):
|
|
super().__init__()
|
|
|
|
assert len(channels) == len(kernels)
|
|
layers = []
|
|
for i in range(len(channels)):
|
|
if i == 0:
|
|
input_channels = in_channels
|
|
else:
|
|
input_channels = channels[i - 1]
|
|
layers.append(
|
|
ConvModule(
|
|
input_channels,
|
|
channels[i],
|
|
kernels[i],
|
|
padding=(kernels[i] - 1) // 2,
|
|
norm_cfg=norm_cfg))
|
|
self.model = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
"""Model forward function."""
|
|
out = self.model(x)
|
|
return out
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class CPM(BaseBackbone):
|
|
"""CPM backbone.
|
|
|
|
Convolutional Pose Machines.
|
|
More details can be found in the `paper
|
|
<https://arxiv.org/abs/1602.00134>`__ .
|
|
|
|
Args:
|
|
in_channels (int): The input channels of the CPM.
|
|
out_channels (int): The output channels of the CPM.
|
|
feat_channels (int): Feature channel of each CPM stage.
|
|
middle_channels (int): Feature channel of conv after the middle stage.
|
|
num_stages (int): Number of stages.
|
|
norm_cfg (dict): Dictionary to construct and config norm layer.
|
|
|
|
Example:
|
|
>>> from mmpose.models import CPM
|
|
>>> import torch
|
|
>>> self = CPM(3, 17)
|
|
>>> self.eval()
|
|
>>> inputs = torch.rand(1, 3, 368, 368)
|
|
>>> level_outputs = self.forward(inputs)
|
|
>>> for level_output in level_outputs:
|
|
... print(tuple(level_output.shape))
|
|
(1, 17, 46, 46)
|
|
(1, 17, 46, 46)
|
|
(1, 17, 46, 46)
|
|
(1, 17, 46, 46)
|
|
(1, 17, 46, 46)
|
|
(1, 17, 46, 46)
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
feat_channels=128,
|
|
middle_channels=32,
|
|
num_stages=6,
|
|
norm_cfg=dict(type='BN', requires_grad=True)):
|
|
# Protect mutable default arguments
|
|
norm_cfg = copy.deepcopy(norm_cfg)
|
|
super().__init__()
|
|
|
|
assert in_channels == 3
|
|
|
|
self.num_stages = num_stages
|
|
assert self.num_stages >= 1
|
|
|
|
self.stem = nn.Sequential(
|
|
ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
|
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
|
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
|
ConvModule(128, 32, 5, padding=2, norm_cfg=norm_cfg),
|
|
ConvModule(32, 512, 9, padding=4, norm_cfg=norm_cfg),
|
|
ConvModule(512, 512, 1, padding=0, norm_cfg=norm_cfg),
|
|
ConvModule(512, out_channels, 1, padding=0, act_cfg=None))
|
|
|
|
self.middle = nn.Sequential(
|
|
ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
|
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
|
|
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
|
|
|
|
self.cpm_stages = nn.ModuleList([
|
|
CpmBlock(
|
|
middle_channels + out_channels,
|
|
channels=[feat_channels, feat_channels, feat_channels],
|
|
kernels=[11, 11, 11],
|
|
norm_cfg=norm_cfg) for _ in range(num_stages - 1)
|
|
])
|
|
|
|
self.middle_conv = nn.ModuleList([
|
|
nn.Sequential(
|
|
ConvModule(
|
|
128, middle_channels, 5, padding=2, norm_cfg=norm_cfg))
|
|
for _ in range(num_stages - 1)
|
|
])
|
|
|
|
self.out_convs = nn.ModuleList([
|
|
nn.Sequential(
|
|
ConvModule(
|
|
feat_channels,
|
|
feat_channels,
|
|
1,
|
|
padding=0,
|
|
norm_cfg=norm_cfg),
|
|
ConvModule(feat_channels, out_channels, 1, act_cfg=None))
|
|
for _ in range(num_stages - 1)
|
|
])
|
|
|
|
def init_weights(self, pretrained=None):
|
|
"""Initialize the weights in backbone.
|
|
|
|
Args:
|
|
pretrained (str, optional): Path to pre-trained weights.
|
|
Defaults to None.
|
|
"""
|
|
if isinstance(pretrained, str):
|
|
logger = get_root_logger()
|
|
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
|
elif pretrained is None:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
normal_init(m, std=0.001)
|
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
|
|
constant_init(m, 1)
|
|
else:
|
|
raise TypeError('pretrained must be a str or None')
|
|
|
|
def forward(self, x):
|
|
"""Model forward function."""
|
|
stage1_out = self.stem(x)
|
|
middle_out = self.middle(x)
|
|
out_feats = []
|
|
|
|
out_feats.append(stage1_out)
|
|
|
|
for ind in range(self.num_stages - 1):
|
|
single_stage = self.cpm_stages[ind]
|
|
out_conv = self.out_convs[ind]
|
|
|
|
inp_feat = torch.cat(
|
|
[out_feats[-1], self.middle_conv[ind](middle_out)], 1)
|
|
cpm_feat = single_stage(inp_feat)
|
|
out_feat = out_conv(cpm_feat)
|
|
out_feats.append(out_feat)
|
|
|
|
return out_feats
|
|
|