# -------------------------------------------------------------------- # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------------------- from typing import Optional, Tuple, Type import torch import torch.nn as nn import torch.nn import torch.nn.functional as F from functools import partial # ---------------------- Vision Transformer of Segment-Anything ---------------------- class ImageEncoderViT(nn.Module): """ We remove the neck which used in the Segment-Anything. """ def __init__(self, img_size : int = 1024, patch_size : int = 16, in_chans : int = 3, embed_dim : int = 768, depth : int = 12, num_heads : int = 12, mlp_ratio : float = 4.0, qkv_bias : bool = True, norm_layer : Type[nn.Module] = nn.LayerNorm, act_layer : Type[nn.Module] = nn.GELU, use_abs_pos : bool = True, use_rel_pos : bool = True, window_size : int = 0, global_attn_indexes : Tuple[int, ...] = (), checkpoint = None ) -> None: super().__init__() self.img_size = img_size self.patch_size = patch_size self.embed_dim = embed_dim self.num_patches = (img_size // patch_size) ** 2 # self.num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) self.pos_embed: Optional[nn.Parameter] = None self.checkpoint = checkpoint if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter( torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) ) # ------------ Model parameters ------------ ## Patch embedding layer self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) ## ViT blocks self.blocks = nn.ModuleList() for i in range(depth): block = Block(dim = embed_dim, num_heads = num_heads, mlp_ratio = mlp_ratio, qkv_bias = qkv_bias, norm_layer = norm_layer, act_layer = act_layer, use_rel_pos = use_rel_pos, window_size = window_size if i not in global_attn_indexes else 0, input_size = (img_size // patch_size, img_size // patch_size), ) self.blocks.append(block) self.load_pretrained() def load_pretrained(self): if self.checkpoint is not None: print('Loading SAM pretrained weight from : {}'.format(self.checkpoint)) # checkpoint state dict checkpoint_state_dict = torch.load(self.checkpoint, map_location="cpu") # model state dict model_state_dict = self.state_dict() encoder_state_dict = {} # check for k in list(checkpoint_state_dict.keys()): if "image_encoder" in k and k[14:] in model_state_dict: shape_model = tuple(model_state_dict[k[14:]].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model == shape_checkpoint or "pos_embed" in k: encoder_state_dict[k[14:]] = checkpoint_state_dict[k] else: print("Shape unmatch: ", k) # interpolate position embedding # interpolate_pos_embed(self, encoder_state_dict, ((self.img_size[0] // self.patch_size), (self.img_size[1] // self.patch_size))) interpolate_pos_embed(self, encoder_state_dict,) # load the weight self.load_state_dict(encoder_state_dict, strict=False) else: print('No SAM pretrained.') # @torch.no_grad() def forward(self, x: torch.Tensor) -> torch.Tensor: # with torch.no_grad(): x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.pos_embed for blk in self.blocks: x = blk(x) # [B, H, W, C] -> [B, N, C] return x.flatten(1, 2) # ---------------------- Model modules ---------------------- class MLPBlock(nn.Module): def __init__(self, embedding_dim: int, mlp_dim: int, act: Type[nn.Module] = nn.GELU, ) -> None: super().__init__() self.lin1 = nn.Linear(embedding_dim, mlp_dim) self.lin2 = nn.Linear(mlp_dim, embedding_dim) self.act = act() def forward(self, x: torch.Tensor) -> torch.Tensor: return self.lin2(self.act(self.lin1(x))) class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class Block(nn.Module): def __init__(self, dim : int, num_heads : int, mlp_ratio : float = 4.0, qkv_bias : bool = True, norm_layer : Type[nn.Module] = nn.LayerNorm, act_layer : Type[nn.Module] = nn.GELU, use_rel_pos : bool = False, window_size : int = 0, input_size : Optional[Tuple[int, int]] = None, ) -> None: super().__init__() # -------------- Basic parameters -------------- self.window_size = window_size # -------------- Model parameters -------------- self.norm1 = norm_layer(dim) self.attn = Attention(dim = dim, num_heads = num_heads, qkv_bias = qkv_bias, use_rel_pos = use_rel_pos, input_size = input_size if window_size == 0 else (window_size, window_size), ) self.norm2 = norm_layer(dim) self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) x = shortcut + x x = x + self.mlp(self.norm2(x)) return x class Attention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = True, use_rel_pos: bool = False, input_size: Optional[Tuple[int, int]] = None, ) -> None: super().__init__() # -------------- Basic parameters -------------- self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.use_rel_pos = use_rel_pos if self.use_rel_pos: assert ( input_size is not None ), "Input size must be provided if using relative positional encoding." # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) # -------------- Model parameters -------------- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape # qkv with shape (3, B, nHead, H * W, C) qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # q, k, v with shape (B * nHead, H * W, C) q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) attn = (q * self.scale) @ k.transpose(-2, -1) if self.use_rel_pos: attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) attn = attn.softmax(dim=-1) x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) x = self.proj(x) return x class PatchEmbed(nn.Module): def __init__(self, kernel_size : Tuple[int, int] = (16, 16), stride : Tuple[int, int] = (16, 16), padding : Tuple[int, int] = (0, 0), in_chans : int = 3, embed_dim : int = 768, ) -> None: super().__init__() self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) # [B, C, H, W] -> [B, H, W, C] x = x.permute(0, 2, 3, 1) return x # ---------------------- Model functions ---------------------- def window_partition(x: torch.Tensor, window_size: int, ) -> Tuple[torch.Tensor, Tuple[int, int]]: """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows, (Hp, Wp) def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int], ) -> torch.Tensor: """ Window unpartition into original sequences and removing padding. Args: windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor, )-> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos(attn : torch.Tensor, q : torch.Tensor, rel_pos_h : torch.Tensor, rel_pos_w : torch.Tensor, q_size : Tuple[int, int], k_size : Tuple[int, int], ) -> torch.Tensor: q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w) B, _, dim = q.shape r_q = q.reshape(B, q_h, q_w, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) attn = ( attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] ).view(B, q_h * q_w, k_h * k_w) return attn def interpolate_pos_embed(model, checkpoint_model): if 'pos_embed' in checkpoint_model: # Pos embed from checkpoint pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] # Pos embed from model pos_embed_model = model.pos_embed num_patches = model.num_patches # [B, H, W, C] -> [B, N, C] pos_embed_checkpoint = pos_embed_checkpoint.flatten(1, 2) pos_embed_model = pos_embed_model.flatten(1, 2) orig_num_postions = pos_embed_model.shape[-2] num_extra_tokens = orig_num_postions - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) new_size = int(num_patches ** 0.5) # height (== width) for the new position embedding # class_token and dist_token are kept unchanged if orig_size != new_size: print("- Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=(new_size,new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) new_pos_embed = new_pos_embed.reshape(-1, int(orig_num_postions ** 0.5), int(orig_num_postions ** 0.5), embedding_size) checkpoint_model['pos_embed'] = new_pos_embed # ------------------------ Model Functions ------------------------ def build_vit_sam(model_name="vit_h", img_size=1024, patch_size=16, img_dim=3, checkpoint=None): if model_name == "vit_b": return ImageEncoderViT(img_size=img_size, patch_size=patch_size, in_chans=img_dim, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), global_attn_indexes=[2, 5, 8, 11], window_size=14, checkpoint=checkpoint, ) if model_name == "vit_l": return ImageEncoderViT(img_size=img_size, patch_size=patch_size, in_chans=img_dim, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), global_attn_indexes=[5, 11, 17, 23], window_size=14, checkpoint=checkpoint, ) if model_name == "vit_h": return ImageEncoderViT(img_size=img_size, patch_size=patch_size, in_chans=img_dim, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4.0, norm_layer=partial(nn.LayerNorm, eps=1e-6), global_attn_indexes=[7, 15, 23, 31], window_size=14, checkpoint=checkpoint, ) if __name__ == '__main__': import torch from thop import profile # Prepare an image as the input bs, c, h, w = 2, 3, 1024, 1024 x = torch.randn(bs, c, h, w) patch_size = 16 device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') # Build model model = build_vit_sam(model_name='vit_b', checkpoint="/home/fhw/code/ViTPose/checkpoints/sam/sam_vit_b_01ec64.pth") if torch.cuda.is_available(): x = x.to(device) model = model.to(device) # Inference outputs = model(x) print(outputs.shape) # Compute FLOPs & Params print('==============================') model.eval() flops, params = profile(model, inputs=(x, ), verbose=False) print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))