Results | Updates | Usage | Todo | Acknowledge
This branch contains the pytorch implementation of ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation. It obtains 81.1 AP on MS COCO Keypoint test-dev set. ## Results from this repo on MS COCO val set Using detection results from a detector that obtains 56 mAP on person. | Model | Pretrain | Resolution | AP | AR | config | log | weight | | :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: | | ViT-Base | MAE | 256x192 | 75.8 | 81.1 | config | log | | | ViT-Large | MAE | 256x192 | 78.3 | 83.5 | config | log | | | ViT-Huge | MAE | 256x192 | 79.1 | 84.1 | config | log | | ## Updates > [2022-04-27] Our ViTPose with ViTAE-G obtains 81.1 AP on COCO test-dev set! > Applications of ViTAE Transformer include: [image classification](https://github.com/ViTAE-Transformer/ViTAE-Transformer/tree/main/Image-Classification) | [object detection](https://github.com/ViTAE-Transformer/ViTAE-Transformer/tree/main/Object-Detection) | [semantic segmentation](https://github.com/ViTAE-Transformer/ViTAE-Transformer/tree/main/Semantic-Segmentation) | [animal pose segmentation](https://github.com/ViTAE-Transformer/ViTAE-Transformer/tree/main/Animal-Pose-Estimation) | [remote sensing](https://github.com/ViTAE-Transformer/ViTAE-Transformer-Remote-Sensing) | [matting](https://github.com/ViTAE-Transformer/ViTAE-Transformer-Matting) | [VSA](https://github.com/ViTAE-Transformer/ViTAE-VSA) | [ViTDet](https://github.com/ViTAE-Transformer/ViTDet) ## Usage We use PyTorch 1.9.0 or NGC docker 21.06, and mmcv 1.3.9 for the experiments. ```bash git clone https://github.com/open-mmlab/mmcv.git cd mmcv git checkout v1.3.9 MMCV_WITH_OPS=1 pip install -e . cd .. git clone https://github.com/ViTAE-Transformer/ViTPose.git cd ViTPose pip install -v -e . ``` After install the two repos, install timm and einops, i.e., ```bash pip install timm==0.4.9 einops ``` Download the pretrained models from [MAE](https://github.com/facebookresearch/mae) or [ViTAE](https://github.com/ViTAE-Transformer/ViTAE-Transformer), and then conduct the experiments by ```bash # for single machine bash tools/dist_train.sh