# Copyright (c) OpenMMLab. All rights reserved. runner = dict( # Basic configurations of the runner name='Pose Estimation', camera_id=0, camera_fps=20, synchronous=False, # Define nodes. # The configuration of a node usually includes: # 1. 'type': Node class name # 2. 'name': Node name # 3. I/O buffers (e.g. 'input_buffer', 'output_buffer'): specify the # input and output buffer names. This may depend on the node class. # 4. 'enable_key': assign a hot-key to toggle enable/disable this node. # This may depend on the node class. # 5. Other class-specific arguments nodes=[ # 'DetectorNode': # This node performs object detection from the frame image using an # MMDetection model. dict( type='DetectorNode', name='Detector', model_config='demo/mmdetection_cfg/' 'ssdlite_mobilenetv2_scratch_600e_coco.py', model_checkpoint='https://download.openmmlab.com' '/mmdetection/v2.0/ssd/' 'ssdlite_mobilenetv2_scratch_600e_coco/ssdlite_mobilenetv2_' 'scratch_600e_coco_20210629_110627-974d9307.pth', input_buffer='_input_', # `_input_` is a runner-reserved buffer output_buffer='det_result'), # 'TopDownPoseEstimatorNode': # This node performs keypoint detection from the frame image using an # MMPose top-down model. Detection results is needed. dict( type='TopDownPoseEstimatorNode', name='Human Pose Estimator', model_config='configs/wholebody/2d_kpt_sview_rgb_img/' 'topdown_heatmap/coco-wholebody/' 'vipnas_mbv3_coco_wholebody_256x192_dark.py', model_checkpoint='https://openmmlab-share.oss-cn-hangz' 'hou.aliyuncs.com/mmpose/top_down/vipnas/vipnas_mbv3_co' 'co_wholebody_256x192_dark-e2158108_20211205.pth', cls_names=['person'], input_buffer='det_result', output_buffer='human_pose'), dict( type='TopDownPoseEstimatorNode', name='Animal Pose Estimator', model_config='configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap' '/animalpose/hrnet_w32_animalpose_256x256.py', model_checkpoint='https://download.openmmlab.com/mmpose/animal/' 'hrnet/hrnet_w32_animalpose_256x256-1aa7f075_20210426.pth', cls_names=['cat', 'dog', 'horse', 'sheep', 'cow'], input_buffer='human_pose', output_buffer='animal_pose'), # 'ModelResultBindingNode': # This node binds the latest model inference result with the current # frame. (This means the frame image and inference result may be # asynchronous). dict( type='ModelResultBindingNode', name='ResultBinder', frame_buffer='_frame_', # `_frame_` is a runner-reserved buffer result_buffer='animal_pose', output_buffer='frame'), # 'HatNode': # This node draw the hat effect in the frame image. # Pose results is needed. dict( type='HatNode', name='Visualizer', enable_key='t', frame_buffer='frame', output_buffer='vis_hat'), # 'FirecrackerNode': # This node draw the firecracker effect in the frame image. # Pose results is needed. dict( type='FirecrackerNode', name='Visualizer', enable_key='f', frame_buffer='vis_hat', output_buffer='vis_firecracker'), # 'NoticeBoardNode': # This node show a notice board with given content, e.g. help # information. dict( type='NoticeBoardNode', name='Helper', enable_key='h', enable=True, frame_buffer='vis_firecracker', output_buffer='vis_notice', content_lines=[ 'This is a demo for pose visualization and simple image ' 'effects. Have fun!', '', 'Hot-keys:', '"t": Hat effect', '"f": Firecracker effect', '"h": Show help information', '"m": Show diagnostic information', '"q": Exit' ], ), # 'MonitorNode': # This node show diagnostic information in the frame image. It can # be used for debugging or monitoring system resource status. dict( type='MonitorNode', name='Monitor', enable_key='m', enable=False, frame_buffer='vis_notice', output_buffer='display'), # 'RecorderNode': # This node save the output video into a file. dict( type='RecorderNode', name='Recorder', out_video_file='record.mp4', frame_buffer='display', output_buffer='_display_' # `_display_` is a runner-reserved buffer ) ])