# Pose Estimation Demo This demo performs human bounding box and keypoint detection, and visualizes results.

## Instruction ### Get started Launch the demo from the mmpose root directory: ```shell python tools/webcam/run_webcam.py --config tools/webcam/configs/examples/pose_estimation.py ``` ### Hotkeys | Hotkey | Function | | -- | -- | | v | Toggle the pose visualization on/off. | | h | Show help information. | | m | Show the monitoring information. | | q | Exit. | Note that the demo will automatically save the output video into a file `record.mp4`. ### Configuration - **Choose a detection model** Users can choose detection models from the [MMDetection Model Zoo](https://mmdetection.readthedocs.io/en/v2.20.0/model_zoo.html). Just set the `model_config` and `model_checkpoint` in the detector node accordingly, and the model will be automatically downloaded and loaded. ```python # 'DetectorNode': # This node performs object detection from the frame image using an # MMDetection model. dict( type='DetectorNode', name='Detector', model_config='demo/mmdetection_cfg/' 'ssdlite_mobilenetv2_scratch_600e_coco.py', model_checkpoint='https://download.openmmlab.com' '/mmdetection/v2.0/ssd/' 'ssdlite_mobilenetv2_scratch_600e_coco/ssdlite_mobilenetv2_' 'scratch_600e_coco_20210629_110627-974d9307.pth', input_buffer='_input_', output_buffer='det_result') ``` - **Choose a or more pose models** In this demo we use two [top-down](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap) pose estimation models for humans and animals respectively. Users can choose models from the [MMPose Model Zoo](https://mmpose.readthedocs.io/en/latest/modelzoo.html). To apply different pose models on different instance types, you can add multiple pose estimator nodes with `cls_names` set accordingly. ```python # 'TopDownPoseEstimatorNode': # This node performs keypoint detection from the frame image using an # MMPose top-down model. Detection results is needed. dict( type='TopDownPoseEstimatorNode', name='Human Pose Estimator', model_config='configs/wholebody/2d_kpt_sview_rgb_img/' 'topdown_heatmap/coco-wholebody/' 'vipnas_mbv3_coco_wholebody_256x192_dark.py', model_checkpoint='https://openmmlab-share.oss-cn-hangz' 'hou.aliyuncs.com/mmpose/top_down/vipnas/vipnas_mbv3_co' 'co_wholebody_256x192_dark-e2158108_20211205.pth', cls_names=['person'], input_buffer='det_result', output_buffer='human_pose'), dict( type='TopDownPoseEstimatorNode', name='Animal Pose Estimator', model_config='configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap' '/animalpose/hrnet_w32_animalpose_256x256.py', model_checkpoint='https://download.openmmlab.com/mmpose/animal/' 'hrnet/hrnet_w32_animalpose_256x256-1aa7f075_20210426.pth', cls_names=['cat', 'dog', 'horse', 'sheep', 'cow'], input_buffer='human_pose', output_buffer='animal_pose') ``` - **Run the demo without GPU** If you don't have GPU and CUDA in your device, the demo can run with only CPU by setting `device='cpu'` in all model nodes. For example: ```python dict( type='DetectorNode', name='Detector', model_config='demo/mmdetection_cfg/' 'ssdlite_mobilenetv2_scratch_600e_coco.py', model_checkpoint='https://download.openmmlab.com' '/mmdetection/v2.0/ssd/' 'ssdlite_mobilenetv2_scratch_600e_coco/ssdlite_mobilenetv2_' 'scratch_600e_coco_20210629_110627-974d9307.pth', device='cpu', input_buffer='_input_', output_buffer='det_result') ``` - **Debug webcam and display** You can lanch the webcam runner with a debug config: ```shell python tools/webcam/run_webcam.py --config tools/webcam/configs/examples/test_camera.py ```