# 3D Body Keypoint Datasets
It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.
MMPose supported datasets:
- [Human3.6M](#human36m) \[ [Homepage](http://vision.imar.ro/human3.6m/description.php) \]
- [CMU Panoptic](#cmu-panoptic) \[ [Homepage](http://domedb.perception.cs.cmu.edu/) \]
## Human3.6M
Human3.6M (TPAMI'2014)
```bibtex
@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}
}
```
For [Human3.6M](http://vision.imar.ro/human3.6m/description.php), please download from the official website and run the [preprocessing script](/tools/dataset/preprocess_h36m.py), which will extract camera parameters and pose annotations at full framerate (50 FPS) and downsampled framerate (10 FPS). The processed data should have the following structure:
```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
├── h36m
├── annotation_body3d
| ├── cameras.pkl
| ├── fps50
| | ├── h36m_test.npz
| | ├── h36m_train.npz
| | ├── joint2d_rel_stats.pkl
| | ├── joint2d_stats.pkl
| | ├── joint3d_rel_stats.pkl
| | `── joint3d_stats.pkl
| `── fps10
| ├── h36m_test.npz
| ├── h36m_train.npz
| ├── joint2d_rel_stats.pkl
| ├── joint2d_stats.pkl
| ├── joint3d_rel_stats.pkl
| `── joint3d_stats.pkl
`── images
├── S1
| ├── S1_Directions_1.54138969
| | ├── S1_Directions_1.54138969_00001.jpg
| | ├── S1_Directions_1.54138969_00002.jpg
| | ├── ...
| ├── ...
├── S5
├── S6
├── S7
├── S8
├── S9
`── S11
```
Please note that Human3.6M dataset is also used in the [3D_body_mesh](/docs/en/tasks/3d_body_mesh.md) task, where different schemes for data preprocessing and organizing are adopted.
## CMU Panoptic
CMU Panoptic (ICCV'2015)
```bibtex
@Article = {joo_iccv_2015,
author = {Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh},
title = {Panoptic Studio: A Massively Multiview System for Social Motion Capture},
booktitle = {ICCV},
year = {2015}
}
```
Please follow [voxelpose-pytorch](https://github.com/microsoft/voxelpose-pytorch) to prepare this dataset.
1. Download the dataset by following the instructions in [panoptic-toolbox](https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox) and extract them under `$MMPOSE/data/panoptic`.
2. Only download those sequences that are needed. You can also just download a subset of camera views by specifying the number of views (HD_Video_Number) and changing the camera order in `./scripts/getData.sh`. The used sequences and camera views can be found in [VoxelPose](https://arxiv.org/abs/2004.06239). Note that the sequence "160906_band3" might not be available due to errors on the server of CMU Panoptic.
3. Note that we only use HD videos, calibration data, and 3D Body Keypoint in the codes. You can comment out other irrelevant codes such as downloading 3D Face data in `./scripts/getData.sh`.
The directory tree should be like this:
```text
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
├── panoptic
├── 16060224_haggling1
| | ├── hdImgs
| | ├── hdvideos
| | ├── hdPose3d_stage1_coco19
| | ├── calibration_160224_haggling1.json
├── 160226_haggling1
├── ...
```