# Copyright (c) OpenMMLab. All rights reserved. import os import warnings from argparse import ArgumentParser import cv2 import numpy as np from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result) from mmpose.datasets import DatasetInfo def main(): """Visualize the demo images. Using mmdet to detect the human. """ parser = ArgumentParser() parser.add_argument('pose_config', help='Config file for pose') parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') parser.add_argument('--video-path', type=str, help='Video path') parser.add_argument( '--show', action='store_true', default=False, help='whether to show visualizations.') parser.add_argument( '--out-video-root', default='', help='Root of the output video file. ' 'Default not saving the visualization video.') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') parser.add_argument( '--radius', type=int, default=4, help='Keypoint radius for visualization') parser.add_argument( '--thickness', type=int, default=1, help='Link thickness for visualization') args = parser.parse_args() assert args.show or (args.out_video_root != '') # build the pose model from a config file and a checkpoint file pose_model = init_pose_model( args.pose_config, args.pose_checkpoint, device=args.device.lower()) dataset = pose_model.cfg.data['test']['type'] dataset_info = pose_model.cfg.data['test'].get('dataset_info', None) if dataset_info is None: warnings.warn( 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) else: dataset_info = DatasetInfo(dataset_info) cap = cv2.VideoCapture(args.video_path) assert cap.isOpened(), f'Faild to load video file {args.video_path}' fps = cap.get(cv2.CAP_PROP_FPS) size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) if args.out_video_root == '': save_out_video = False else: os.makedirs(args.out_video_root, exist_ok=True) save_out_video = True if save_out_video: fourcc = cv2.VideoWriter_fourcc(*'mp4v') videoWriter = cv2.VideoWriter( os.path.join(args.out_video_root, f'vis_{os.path.basename(args.video_path)}'), fourcc, fps, size) # optional return_heatmap = False # e.g. use ('backbone', ) to return backbone feature output_layer_names = None while (cap.isOpened()): flag, img = cap.read() if not flag: break # keep the person class bounding boxes. person_results = [{'bbox': np.array([0, 0, size[0], size[1]])}] # test a single image, with a list of bboxes. pose_results, returned_outputs = inference_top_down_pose_model( pose_model, img, person_results, format='xyxy', dataset=dataset, dataset_info=dataset_info, return_heatmap=return_heatmap, outputs=output_layer_names) # show the results vis_img = vis_pose_result( pose_model, img, pose_results, radius=args.radius, thickness=args.thickness, dataset=dataset, dataset_info=dataset_info, kpt_score_thr=args.kpt_thr, show=False) if args.show: cv2.imshow('Image', vis_img) if save_out_video: videoWriter.write(vis_img) if args.show and cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() if save_out_video: videoWriter.release() if args.show: cv2.destroyAllWindows() if __name__ == '__main__': main()