# Copyright (c) OpenMMLab. All rights reserved. import os import warnings from argparse import ArgumentParser import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_tracking_result) from mmpose.datasets import DatasetInfo try: from mmtrack.apis import inference_mot from mmtrack.apis import init_model as init_tracking_model has_mmtrack = True except (ImportError, ModuleNotFoundError): has_mmtrack = False def process_mmtracking_results(mmtracking_results): """Process mmtracking results. :param mmtracking_results: :return: a list of tracked bounding boxes """ person_results = [] # 'track_results' is changed to 'track_bboxes' # in https://github.com/open-mmlab/mmtracking/pull/300 if 'track_bboxes' in mmtracking_results: tracking_results = mmtracking_results['track_bboxes'][0] elif 'track_results' in mmtracking_results: tracking_results = mmtracking_results['track_results'][0] for track in tracking_results: person = {} person['track_id'] = int(track[0]) person['bbox'] = track[1:] person_results.append(person) return person_results def main(): """Visualize the demo images. Using mmdet to detect the human. """ parser = ArgumentParser() parser.add_argument('tracking_config', help='Config file for tracking') parser.add_argument('pose_config', help='Config file for pose') parser.add_argument('pose_checkpoint', help='Checkpoint file for pose') parser.add_argument('--video-path', type=str, help='Video path') parser.add_argument( '--show', action='store_true', default=False, help='whether to show visualizations.') parser.add_argument( '--out-video-root', default='', help='Root of the output video file. ' 'Default not saving the visualization video.') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--bbox-thr', type=float, default=0.3, help='Bounding box score threshold') parser.add_argument( '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') parser.add_argument( '--radius', type=int, default=4, help='Keypoint radius for visualization') parser.add_argument( '--thickness', type=int, default=1, help='Link thickness for visualization') assert has_mmtrack, 'Please install mmtrack to run the demo.' args = parser.parse_args() assert args.show or (args.out_video_root != '') assert args.tracking_config is not None tracking_model = init_tracking_model( args.tracking_config, None, device=args.device.lower()) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model( args.pose_config, args.pose_checkpoint, device=args.device.lower()) dataset = pose_model.cfg.data['test']['type'] dataset_info = pose_model.cfg.data['test'].get('dataset_info', None) if dataset_info is None: warnings.warn( 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) else: dataset_info = DatasetInfo(dataset_info) cap = cv2.VideoCapture(args.video_path) assert cap.isOpened(), f'Faild to load video file {args.video_path}' if args.out_video_root == '': save_out_video = False else: os.makedirs(args.out_video_root, exist_ok=True) save_out_video = True if save_out_video: fps = cap.get(cv2.CAP_PROP_FPS) size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) fourcc = cv2.VideoWriter_fourcc(*'mp4v') videoWriter = cv2.VideoWriter( os.path.join(args.out_video_root, f'vis_{os.path.basename(args.video_path)}'), fourcc, fps, size) # optional return_heatmap = False # e.g. use ('backbone', ) to return backbone feature output_layer_names = None frame_id = 0 while (cap.isOpened()): flag, img = cap.read() if not flag: break mmtracking_results = inference_mot( tracking_model, img, frame_id=frame_id) # keep the person class bounding boxes. person_results = process_mmtracking_results(mmtracking_results) # test a single image, with a list of bboxes. pose_results, returned_outputs = inference_top_down_pose_model( pose_model, img, person_results, bbox_thr=args.bbox_thr, format='xyxy', dataset=dataset, dataset_info=dataset_info, return_heatmap=return_heatmap, outputs=output_layer_names) # show the results vis_img = vis_pose_tracking_result( pose_model, img, pose_results, radius=args.radius, thickness=args.thickness, dataset=dataset, dataset_info=dataset_info, kpt_score_thr=args.kpt_thr, show=False) if args.show: cv2.imshow('Image', vis_img) if save_out_video: videoWriter.write(vis_img) if args.show and cv2.waitKey(1) & 0xFF == ord('q'): break frame_id += 1 cap.release() if save_out_video: videoWriter.release() if args.show: cv2.destroyAllWindows() if __name__ == '__main__': main()