diff --git a/configs/vitpose_sam/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTSam_base_coco_256x192.py b/configs/vitpose_sam/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTSam_base_coco_256x192.py new file mode 100644 index 0000000..3f7cf86 --- /dev/null +++ b/configs/vitpose_sam/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTSam_base_coco_256x192.py @@ -0,0 +1,177 @@ +_base_ = [ + '../../../../_base_/default_runtime.py', + '../../../../_base_/datasets/coco.py' +] +evaluation = dict(interval=1, metric='mAP', save_best='AP') + +optimizer = dict(type='AdamW', + lr=5e-4, betas=(0.9, 0.999), weight_decay=0.1, + constructor='LayerDecayOptimizerConstructor', + paramwise_cfg=dict( + num_layers=12, + layer_decay_rate=0.75, + custom_keys={ + 'bias': dict(decay_multi=0.), + 'pos_embed': dict(decay_mult=0.), + 'relative_position_bias_table': dict(decay_mult=0.), + 'norm': dict(decay_mult=0.) + } + ) + ) + +optimizer_config = dict(grad_clip=dict(max_norm=1., norm_type=2)) + +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=0.001, + step=[170, 200]) +total_epochs = 210 +target_type = 'GaussianHeatmap' +channel_cfg = dict( + num_output_channels=17, + dataset_joints=17, + dataset_channel=[ + [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], + ], + inference_channel=[ + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 + ]) + +# model settings +model = dict( + type='TopDownSelf', + pretrained=None, + backbone=dict( + type='ViTSam', + img_size=(256, 192), + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + ratio=1, + use_checkpoint=False, + mlp_ratio=4, + qkv_bias=True, + drop_path_rate=0.3, + frozen_stages=12, + freeze_attn = True, + freeze_ffn = True, + samvit_checkpoint='/root/autodl-tmp/code/ViTPose/checkpoints/sam/sam_vit_b_01ec64.pth' + ), + keypoint_head=dict( + type='TopdownHeatmapSimpleHead', + in_channels=768, + num_deconv_layers=2, + num_deconv_filters=(256, 256), + num_deconv_kernels=(4, 4), + extra=dict(final_conv_kernel=1, ), + out_channels=channel_cfg['num_output_channels'], + loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), + train_cfg=dict(), + test_cfg=dict( + flip_test=True, + post_process='default', + shift_heatmap=False, + target_type=target_type, + modulate_kernel=11, + use_udp=True)) + +data_root = '/root/autodl-tmp/dataset/coco2017/' + +data_cfg = dict( + image_size=[192, 256], + heatmap_size=[48, 64], + num_output_channels=channel_cfg['num_output_channels'], + num_joints=channel_cfg['dataset_joints'], + dataset_channel=channel_cfg['dataset_channel'], + inference_channel=channel_cfg['inference_channel'], + soft_nms=False, + nms_thr=1.0, + oks_thr=0.9, + vis_thr=0.2, + use_gt_bbox=False, + det_bbox_thr=0.0, + bbox_file=f'{data_root}/person_detection_results/COCO_val2017_detections_AP_H_56_person.json', +) + +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='TopDownRandomFlip', flip_prob=0.5), + dict( + type='TopDownHalfBodyTransform', + num_joints_half_body=8, + prob_half_body=0.3), + dict( + type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), + # dict(type='TopDownAffine', use_udp=True), + dict(type='TopDownAffineSam', use_udp=True), + dict(type='ToTensorSam'), + dict( + type='NormalizeTensorSam', + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]), + dict( + type='TopDownGenerateTarget', + sigma=2, + encoding='UDP', + target_type=target_type), + dict( + type='Collect', + keys=['img', 'sam_img', 'target', 'target_weight'], + meta_keys=[ + 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', + 'rotation', 'bbox_score', 'flip_pairs' + ]), +] + +val_pipeline = [ + dict(type='LoadImageFromFile'), + # dict(type='TopDownAffine', use_udp=True), + dict(type='TopDownAffineSam', use_udp=True), + dict(type='ToTensorSam'), + dict( + type='NormalizeTensorSam', + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]), + dict( + type='Collect', + keys=['img', 'sam_img'], + meta_keys=[ + 'image_file', 'center', 'scale', 'rotation', 'bbox_score', + 'flip_pairs' + ]), +] + +test_pipeline = val_pipeline + +data = dict( + samples_per_gpu=12, + workers_per_gpu=4, + val_dataloader=dict(samples_per_gpu=12), + test_dataloader=dict(samples_per_gpu=12), + train=dict( + type='TopDownCocoDataset', + ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', + img_prefix=f'{data_root}/train2017/', + data_cfg=data_cfg, + pipeline=train_pipeline, + dataset_info={{_base_.dataset_info}}), + val=dict( + type='TopDownCocoDataset', + ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', + img_prefix=f'{data_root}/val2017/', + data_cfg=data_cfg, + pipeline=val_pipeline, + dataset_info={{_base_.dataset_info}}), + test=dict( + type='TopDownCocoDataset', + ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', + img_prefix=f'{data_root}/val2017/', + data_cfg=data_cfg, + pipeline=test_pipeline, + dataset_info={{_base_.dataset_info}}), +) + diff --git a/mmpose/.mim/configs b/mmpose/.mim/configs new file mode 120000 index 0000000..5992d10 --- /dev/null +++ b/mmpose/.mim/configs @@ -0,0 +1 @@ +../../configs \ No newline at end of file diff --git a/mmpose/.mim/demo b/mmpose/.mim/demo new file mode 120000 index 0000000..bf71256 --- /dev/null +++ b/mmpose/.mim/demo @@ -0,0 +1 @@ +../../demo \ No newline at end of file diff --git a/mmpose/.mim/model-index.yml b/mmpose/.mim/model-index.yml new file mode 120000 index 0000000..a18c0b3 --- /dev/null +++ b/mmpose/.mim/model-index.yml @@ -0,0 +1 @@ +../../model-index.yml \ No newline at end of file diff --git a/mmpose/.mim/tools b/mmpose/.mim/tools new file mode 120000 index 0000000..31941e9 --- /dev/null +++ b/mmpose/.mim/tools @@ -0,0 +1 @@ +../../tools \ No newline at end of file diff --git a/mmpose/datasets/pipelines/__init__.py b/mmpose/datasets/pipelines/__init__.py index cf06db1..db117a3 100644 --- a/mmpose/datasets/pipelines/__init__.py +++ b/mmpose/datasets/pipelines/__init__.py @@ -6,3 +6,6 @@ from .mesh_transform import * # noqa from .pose3d_transform import * # noqa from .shared_transform import * # noqa from .top_down_transform import * # noqa + +from .top_down_transform_self import * # noqa +from .shared_transform_self import * # noqa diff --git a/mmpose/datasets/pipelines/shared_transform_self.py b/mmpose/datasets/pipelines/shared_transform_self.py new file mode 100644 index 0000000..b9faf29 --- /dev/null +++ b/mmpose/datasets/pipelines/shared_transform_self.py @@ -0,0 +1,76 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +from collections.abc import Sequence + +import mmcv +import numpy as np +from mmcv.parallel import DataContainer as DC +from mmcv.utils import build_from_cfg +from numpy import random +from torchvision.transforms import functional as F + +from ..builder import PIPELINES + +try: + import albumentations +except ImportError: + albumentations = None + + +@PIPELINES.register_module() +class ToTensorSam: + """Transform image to Tensor. + + Required key: 'img'. Modifies key: 'img'. + + Args: + results (dict): contain all information about training. + """ + + def __call__(self, results): + if isinstance(results['img'], (list, tuple)): + results['img'] = [F.to_tensor(img) for img in results['img']] + # 修改 + results['sam_img'] = [F.to_tensor(sam_img) for sam_img in results['sam_img']] + else: + results['img'] = F.to_tensor(results['img']) + # 修改 + results['sam_img'] = F.to_tensor(results['sam_img']) + + return results + + +@PIPELINES.register_module() +class NormalizeTensorSam: + """Normalize the Tensor image (CxHxW), with mean and std. + + Required key: 'img'. Modifies key: 'img'. + + Args: + mean (list[float]): Mean values of 3 channels. + std (list[float]): Std values of 3 channels. + """ + + def __init__(self, mean, std): + self.mean = mean + self.std = std + + def __call__(self, results): + if isinstance(results['img'], (list, tuple)): + results['img'] = [ + F.normalize(img, mean=self.mean, std=self.std) + for img in results['img'] + ] + # 修改 + results['sam_img'] = [ + F.normalize(sam_img, mean=self.mean, std=self.std) + for sam_img in results['sam_img'] + ] + else: + results['img'] = F.normalize( + results['img'], mean=self.mean, std=self.std) + # 修改 + results['sam_img'] = F.normalize( + results['sam_img'], mean=self.mean, std=self.std) + + return results diff --git a/mmpose/datasets/pipelines/top_down_transform_self.py b/mmpose/datasets/pipelines/top_down_transform_self.py new file mode 100644 index 0000000..c6c8b49 --- /dev/null +++ b/mmpose/datasets/pipelines/top_down_transform_self.py @@ -0,0 +1,113 @@ +import cv2 +import numpy as np + +from mmpose.core.post_processing import (affine_transform, fliplr_joints, + get_affine_transform, get_warp_matrix, + warp_affine_joints) +from mmpose.datasets.builder import PIPELINES + +@PIPELINES.register_module() +class TopDownAffineSam: + """Affine transform the image to make input. + + Required keys:'img', 'joints_3d', 'joints_3d_visible', 'ann_info','scale', + 'rotation' and 'center'. + + Modified keys:'img', 'joints_3d', and 'joints_3d_visible'. + + Args: + use_udp (bool): To use unbiased data processing. + Paper ref: Huang et al. The Devil is in the Details: Delving into + Unbiased Data Processing for Human Pose Estimation (CVPR 2020). + """ + + def __init__(self, use_udp=False): + self.use_udp = use_udp + + def __call__(self, results): + image_size = results['ann_info']['image_size'] + # 修改 + sam_image_size = np.array([1024, 1024]) + + img = results['img'] + joints_3d = results['joints_3d'] + joints_3d_visible = results['joints_3d_visible'] + c = results['center'] + s = results['scale'] + r = results['rotation'] + # 修改 + sam_img = img + + if self.use_udp: + trans = get_warp_matrix(r, c * 2.0, image_size - 1.0, s * 200.0) + # 修改 + sam_trans = get_warp_matrix(r, c * 2.0, sam_image_size - 1.0, s * 200.0) + if not isinstance(img, list): + img = cv2.warpAffine( + img, + trans, (int(image_size[0]), int(image_size[1])), + flags=cv2.INTER_LINEAR) + # 修改 + sam_img = cv2.warpAffine( + sam_img, + sam_trans, (int(sam_image_size[0]), int(sam_image_size[1])), + flags=cv2.INTER_LINEAR) + else: + img = [ + cv2.warpAffine( + i, + trans, (int(image_size[0]), int(image_size[1])), + flags=cv2.INTER_LINEAR) for i in img + ] + # 修改 + sam_img = [ + cv2.warpAffine( + i, + sam_trans, (int(sam_image_size[0]), int(sam_image_size[1])), + flags=cv2.INTER_LINEAR) for i in sam_img + ] + + joints_3d[:, 0:2] = \ + warp_affine_joints(joints_3d[:, 0:2].copy(), trans) + + else: + trans = get_affine_transform(c, s, r, image_size) + # 修改 + sam_trans = get_affine_transform(c, s, r, sam_image_size) + if not isinstance(img, list): + img = cv2.warpAffine( + img, + trans, (int(image_size[0]), int(image_size[1])), + flags=cv2.INTER_LINEAR) + + # 修改 + sam_img = cv2.warpAffine( + sam_img, + sam_trans, (int(sam_image_size[0]), int(sam_image_size[1])), + flags=cv2.INTER_LINEAR) + else: + img = [ + cv2.warpAffine( + i, + trans, (int(image_size[0]), int(image_size[1])), + flags=cv2.INTER_LINEAR) for i in img + ] + # 修改 + sam_img = [ + cv2.warpAffine( + i, + sam_trans, (int(sam_image_size[0]), int(sam_image_size[1])), + flags=cv2.INTER_LINEAR) for i in sam_img + ] + + for i in range(results['ann_info']['num_joints']): + if joints_3d_visible[i, 0] > 0.0: + joints_3d[i, + 0:2] = affine_transform(joints_3d[i, 0:2], trans) + + results['img'] = img + results['sam_img'] = sam_img + results['joints_3d'] = joints_3d + results['joints_3d_visible'] = joints_3d_visible + + return results \ No newline at end of file diff --git a/mmpose/models/backbones/__init__.py b/mmpose/models/backbones/__init__.py index 2b8efcf..2697798 100644 --- a/mmpose/models/backbones/__init__.py +++ b/mmpose/models/backbones/__init__.py @@ -27,10 +27,12 @@ from .vipnas_resnet import ViPNAS_ResNet from .vit import ViT from .vit_moe import ViTMoE +from .vit_sam import ViTSam + __all__ = [ 'AlexNet', 'HourglassNet', 'HourglassAENet', 'HRNet', 'MobileNetV2', 'MobileNetV3', 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SCNet', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2', 'CPM', 'RSN', 'MSPN', 'ResNeSt', 'VGG', 'TCN', 'ViPNAS_ResNet', 'ViPNAS_MobileNetV3', - 'LiteHRNet', 'V2VNet', 'HRFormer', 'ViT', 'ViTMoE' + 'LiteHRNet', 'V2VNet', 'HRFormer', 'ViT', 'ViTMoE', 'ViTSam' ] diff --git a/mmpose/models/backbones/sam_vit/__init__.py b/mmpose/models/backbones/sam_vit/__init__.py new file mode 100644 index 0000000..ba70579 --- /dev/null +++ b/mmpose/models/backbones/sam_vit/__init__.py @@ -0,0 +1 @@ +from .image_encoder import build_vit_sam \ No newline at end of file diff --git a/mmpose/models/backbones/sam_vit/image_encoder.py b/mmpose/models/backbones/sam_vit/image_encoder.py new file mode 100644 index 0000000..10e4488 --- /dev/null +++ b/mmpose/models/backbones/sam_vit/image_encoder.py @@ -0,0 +1,477 @@ +# -------------------------------------------------------------------- +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------------------- + +from typing import Optional, Tuple, Type + +import torch +import torch.nn as nn +import torch.nn +import torch.nn.functional as F + +from functools import partial + + +# ---------------------- Vision Transformer of Segment-Anything ---------------------- +class ImageEncoderViT(nn.Module): + """ + We remove the neck which used in the Segment-Anything. + """ + def __init__(self, + img_size : int = 1024, + patch_size : int = 16, + in_chans : int = 3, + embed_dim : int = 768, + depth : int = 12, + num_heads : int = 12, + mlp_ratio : float = 4.0, + qkv_bias : bool = True, + norm_layer : Type[nn.Module] = nn.LayerNorm, + act_layer : Type[nn.Module] = nn.GELU, + use_abs_pos : bool = True, + use_rel_pos : bool = True, + window_size : int = 0, + global_attn_indexes : Tuple[int, ...] = (), + checkpoint = None + ) -> None: + super().__init__() + self.img_size = img_size + self.patch_size = patch_size + self.embed_dim = embed_dim + self.num_patches = (img_size // patch_size) ** 2 + # self.num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) + self.pos_embed: Optional[nn.Parameter] = None + self.checkpoint = checkpoint + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) + ) + + # ------------ Model parameters ------------ + ## Patch embedding layer + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + ## ViT blocks + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block(dim = embed_dim, + num_heads = num_heads, + mlp_ratio = mlp_ratio, + qkv_bias = qkv_bias, + norm_layer = norm_layer, + act_layer = act_layer, + use_rel_pos = use_rel_pos, + window_size = window_size if i not in global_attn_indexes else 0, + input_size = (img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.load_pretrained() + + def load_pretrained(self): + if self.checkpoint is not None: + print('Loading SAM pretrained weight from : {}'.format(self.checkpoint)) + # checkpoint state dict + checkpoint_state_dict = torch.load(self.checkpoint, map_location="cpu") + # model state dict + model_state_dict = self.state_dict() + encoder_state_dict = {} + # check + for k in list(checkpoint_state_dict.keys()): + if "image_encoder" in k and k[14:] in model_state_dict: + shape_model = tuple(model_state_dict[k[14:]].shape) + shape_checkpoint = tuple(checkpoint_state_dict[k].shape) + if shape_model == shape_checkpoint or "pos_embed" in k: + encoder_state_dict[k[14:]] = checkpoint_state_dict[k] + else: + print("Shape unmatch: ", k) + + # interpolate position embedding + # interpolate_pos_embed(self, encoder_state_dict, ((self.img_size[0] // self.patch_size), (self.img_size[1] // self.patch_size))) + interpolate_pos_embed(self, encoder_state_dict,) + + # load the weight + self.load_state_dict(encoder_state_dict, strict=False) + else: + print('No SAM pretrained.') + + # @torch.no_grad() + def forward(self, x: torch.Tensor) -> torch.Tensor: + # with torch.no_grad(): + + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + + for blk in self.blocks: + x = blk(x) + + # [B, H, W, C] -> [B, N, C] + return x.flatten(1, 2) + + +# ---------------------- Model modules ---------------------- +class MLPBlock(nn.Module): + def __init__(self, + embedding_dim: int, + mlp_dim: int, + act: Type[nn.Module] = nn.GELU, + ) -> None: + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + + return x + +class Block(nn.Module): + def __init__(self, + dim : int, + num_heads : int, + mlp_ratio : float = 4.0, + qkv_bias : bool = True, + norm_layer : Type[nn.Module] = nn.LayerNorm, + act_layer : Type[nn.Module] = nn.GELU, + use_rel_pos : bool = False, + window_size : int = 0, + input_size : Optional[Tuple[int, int]] = None, + ) -> None: + super().__init__() + # -------------- Basic parameters -------------- + self.window_size = window_size + # -------------- Model parameters -------------- + self.norm1 = norm_layer(dim) + self.attn = Attention(dim = dim, + num_heads = num_heads, + qkv_bias = qkv_bias, + use_rel_pos = use_rel_pos, + input_size = input_size if window_size == 0 else (window_size, window_size), + ) + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + +class Attention(nn.Module): + def __init__(self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + super().__init__() + # -------------- Basic parameters -------------- + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + # -------------- Model parameters -------------- + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + + attn = attn.softmax(dim=-1) + x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) + x = self.proj(x) + + return x + +class PatchEmbed(nn.Module): + def __init__(self, + kernel_size : Tuple[int, int] = (16, 16), + stride : Tuple[int, int] = (16, 16), + padding : Tuple[int, int] = (0, 0), + in_chans : int = 3, + embed_dim : int = 768, + ) -> None: + super().__init__() + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # [B, C, H, W] -> [B, H, W, C] + x = x.permute(0, 2, 3, 1) + + return x + + +# ---------------------- Model functions ---------------------- +def window_partition(x: torch.Tensor, + window_size: int, + ) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + + return windows, (Hp, Wp) + +def window_unpartition(windows: torch.Tensor, + window_size: int, + pad_hw: Tuple[int, int], + hw: Tuple[int, int], + ) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + + return x + +def get_rel_pos(q_size: int, + k_size: int, + rel_pos: torch.Tensor, + )-> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + +def add_decomposed_rel_pos(attn : torch.Tensor, + q : torch.Tensor, + rel_pos_h : torch.Tensor, + rel_pos_w : torch.Tensor, + q_size : Tuple[int, int], + k_size : Tuple[int, int], + ) -> torch.Tensor: + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn = ( + attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + ).view(B, q_h * q_w, k_h * k_w) + + return attn + +def interpolate_pos_embed(model, checkpoint_model): + if 'pos_embed' in checkpoint_model: + # Pos embed from checkpoint + pos_embed_checkpoint = checkpoint_model['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + # Pos embed from model + pos_embed_model = model.pos_embed + num_patches = model.num_patches + # [B, H, W, C] -> [B, N, C] + pos_embed_checkpoint = pos_embed_checkpoint.flatten(1, 2) + pos_embed_model = pos_embed_model.flatten(1, 2) + + orig_num_postions = pos_embed_model.shape[-2] + num_extra_tokens = orig_num_postions - num_patches + + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + new_size = int(num_patches ** 0.5) + + # height (== width) for the new position embedding + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("- Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate(pos_tokens, + size=(new_size,new_size), + mode='bicubic', + align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + new_pos_embed = new_pos_embed.reshape(-1, int(orig_num_postions ** 0.5), int(orig_num_postions ** 0.5), embedding_size) + checkpoint_model['pos_embed'] = new_pos_embed + + +# ------------------------ Model Functions ------------------------ +def build_vit_sam(model_name="vit_h", img_size=1024, patch_size=16, img_dim=3, checkpoint=None): + if model_name == "vit_b": + return ImageEncoderViT(img_size=img_size, + patch_size=patch_size, + in_chans=img_dim, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4.0, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + global_attn_indexes=[2, 5, 8, 11], + window_size=14, + checkpoint=checkpoint, + ) + if model_name == "vit_l": + return ImageEncoderViT(img_size=img_size, + patch_size=patch_size, + in_chans=img_dim, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4.0, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + global_attn_indexes=[5, 11, 17, 23], + window_size=14, + checkpoint=checkpoint, + ) + if model_name == "vit_h": + return ImageEncoderViT(img_size=img_size, + patch_size=patch_size, + in_chans=img_dim, + embed_dim=1280, + depth=32, + num_heads=16, + mlp_ratio=4.0, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + global_attn_indexes=[7, 15, 23, 31], + window_size=14, + checkpoint=checkpoint, + ) + + +if __name__ == '__main__': + import torch + from thop import profile + + # Prepare an image as the input + bs, c, h, w = 2, 3, 1024, 1024 + x = torch.randn(bs, c, h, w) + patch_size = 16 + device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') + + # Build model + model = build_vit_sam(model_name='vit_b', checkpoint="/home/fhw/code/ViTPose/checkpoints/sam/sam_vit_b_01ec64.pth") + if torch.cuda.is_available(): + x = x.to(device) + model = model.to(device) + + # Inference + outputs = model(x) + print(outputs.shape) + + # Compute FLOPs & Params + print('==============================') + model.eval() + flops, params = profile(model, inputs=(x, ), verbose=False) + print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) + print('Params : {:.2f} M'.format(params / 1e6)) diff --git a/mmpose/models/backbones/vit_sam.py b/mmpose/models/backbones/vit_sam.py new file mode 100644 index 0000000..80c1b4f --- /dev/null +++ b/mmpose/models/backbones/vit_sam.py @@ -0,0 +1,483 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import math + +import torch +from functools import partial +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint + +from timm.models.layers import drop_path, to_2tuple, trunc_normal_ + +from ..builder import BACKBONES +from .base_backbone import BaseBackbone + +from .sam_vit import build_vit_sam + + +def get_abs_pos(abs_pos, h, w, ori_h, ori_w, has_cls_token=True): + """ + Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token + dimension for the original embeddings. + Args: + abs_pos (Tensor): absolute positional embeddings with (1, num_position, C). + has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token. + hw (Tuple): size of input image tokens. + + Returns: + Absolute positional embeddings after processing with shape (1, H, W, C) + """ + cls_token = None + B, L, C = abs_pos.shape + if has_cls_token: + cls_token = abs_pos[:, 0:1] + abs_pos = abs_pos[:, 1:] + + if ori_h != h or ori_w != w: + new_abs_pos = F.interpolate( + abs_pos.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2), + size=(h, w), + mode="bicubic", + align_corners=False, + ).permute(0, 2, 3, 1).reshape(B, -1, C) + + else: + new_abs_pos = abs_pos + + if cls_token is not None: + new_abs_pos = torch.cat([cls_token, new_abs_pos], dim=1) + return new_abs_pos + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) + + def extra_repr(self): + return 'p={}'.format(self.drop_prob) + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.fc2(x) + x = self.drop(x) + return x + +class Attention(nn.Module): + def __init__( + self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., + proj_drop=0., attn_head_dim=None,): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.dim = dim + + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + + self.scale = qk_scale or head_dim ** -0.5 + + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias) + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + + return x + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, + drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, + norm_layer=nn.LayerNorm, attn_head_dim=None + ): + super().__init__() + + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, + attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim + ) + + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2) + self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio)) + self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1])) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio//2-1)) + + def forward(self, x, **kwargs): + B, C, H, W = x.shape + x = self.proj(x) + Hp, Wp = x.shape[2], x.shape[3] + + x = x.flatten(2).transpose(1, 2) + return x, (Hp, Wp) + + +class HybridEmbed(nn.Module): + """ CNN Feature Map Embedding + Extract feature map from CNN, flatten, project to embedding dim. + """ + def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): + super().__init__() + assert isinstance(backbone, nn.Module) + img_size = to_2tuple(img_size) + self.img_size = img_size + self.backbone = backbone + if feature_size is None: + with torch.no_grad(): + training = backbone.training + if training: + backbone.eval() + o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] + feature_size = o.shape[-2:] + feature_dim = o.shape[1] + backbone.train(training) + else: + feature_size = to_2tuple(feature_size) + feature_dim = self.backbone.feature_info.channels()[-1] + self.num_patches = feature_size[0] * feature_size[1] + self.proj = nn.Linear(feature_dim, embed_dim) + + def forward(self, x): + x = self.backbone(x)[-1] + x = x.flatten(2).transpose(1, 2) + x = self.proj(x) + return x + +class Cross_Attention(nn.Module): + def __init__(self, dim, num_heads=12, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + + self.self_attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, + attn_drop=attn_drop, proj_drop=0.) + + self.linear_q = nn.Linear(dim, dim, bias=qkv_bias) + self.linear_k = nn.Linear(dim, dim, bias=qkv_bias) + self.linear_v = nn.Linear(dim, dim, bias=qkv_bias) + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x_1, x_2, x_3): + B, N, C = x_1.shape # q + B, N_1, C = x_2.shape # k, v + + q = self.linear_q(x_1).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # (B, num_heads, N, C//num_heads) + k = self.linear_k(x_2).reshape(B, N_1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # (B, num_heads, N_1, C//num_heads) + v = self.linear_v(x_3).reshape(B, N_1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # (B, num_heads, N_1, C//num_heads) + + attn = (q @ k.transpose(-2, -1)) * self.scale # (B, num_heads, N, N_1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + # import matplotlib.pyplot as plt + # import seaborn as sns + + # attn_map = attn[0][0].cpu().detach().numpy() + # plt.figure(figsize=(20, 10)) + # sns.heatmap(attn_map, annot=True, fmt='.2f', cmap='coolwarm') + + # plt.title('Cross Attention Map') + # plt.xlabel('N_1') + # plt.ylabel('N') + + # plt.savefig('/home/fhw/code/ViTPose/test/cross_attn_map.png') + # plt.close() + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) # (B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + +class CustomAttentionFFN(nn.Module): + def __init__(self, dim, num_heads=12, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): + super().__init__() + self.self_attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, + attn_drop=attn_drop, proj_drop=proj_drop) + + self.cross_attn = Cross_Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, \ + qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=proj_drop) + + self.ffn = nn.Sequential( + nn.Linear(dim, dim * 4), + nn.GELU(), + nn.Linear(dim * 4, dim) + ) + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + + def forward(self, x1, x2): + x1 = self.norm1(x1 + self.self_attn(x1)) + + x1 = self.norm2(x1 + self.cross_attn(x1, x2, x2)) + + x1 = self.norm3(x1 + self.ffn(x1)) + + return x1 + +@BACKBONES.register_module() +class ViTSam(BaseBackbone): + + def __init__(self, + img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., + drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False, + frozen_stages=-1, ratio=1, last_norm=True, + patch_padding='pad', freeze_attn=False, freeze_ffn=False, samvit_checkpoint=None + ): + # Protect mutable default arguments + super(ViTSam, self).__init__() + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) + self.num_classes = num_classes + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + self.frozen_stages = frozen_stages + self.use_checkpoint = use_checkpoint + self.patch_padding = patch_padding + self.freeze_attn = freeze_attn + self.freeze_ffn = freeze_ffn + self.depth = depth + + if hybrid_backbone is not None: + self.patch_embed = HybridEmbed( + hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) + else: + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio) + num_patches = self.patch_embed.num_patches + + # since the pretraining model has class token + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + ) + for i in range(depth)]) + + self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity() + + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + + self._freeze_stages() + + # ======================== SAM-ViT ======================== + self.sam_vit = build_vit_sam(model_name='vit_b', checkpoint=samvit_checkpoint) + self.sam_vit.eval() + for param in self.sam_vit.parameters(): + param.requires_grad = False + + # self.cross_attn = Cross_Attention(embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, \ + # qk_scale=qk_scale, attn_drop=attn_drop_rate, proj_drop=drop_rate) + + self.custom_attn_ffn = CustomAttentionFFN(embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, \ + qk_scale=qk_scale, attn_drop=attn_drop_rate, proj_drop=drop_rate) + + def _freeze_stages(self): + """Freeze parameters.""" + if self.frozen_stages >= 0: + self.patch_embed.eval() + for param in self.patch_embed.parameters(): + param.requires_grad = False + + for i in range(0, self.frozen_stages): + m = self.blocks[i] + m.eval() + for param in m.parameters(): + param.requires_grad = False + + if self.freeze_attn: + for i in range(0, self.depth): + m = self.blocks[i] + m.attn.eval() + m.norm1.eval() + for param in m.attn.parameters(): + param.requires_grad = False + for param in m.norm1.parameters(): + param.requires_grad = False + + if self.freeze_ffn: + self.pos_embed.requires_grad = False + self.patch_embed.eval() + for param in self.patch_embed.parameters(): + param.requires_grad = False + for i in range(0, self.depth): + m = self.blocks[i] + m.mlp.eval() + m.norm2.eval() + for param in m.mlp.parameters(): + param.requires_grad = False + for param in m.norm2.parameters(): + param.requires_grad = False + + def init_weights(self, pretrained=None): + """Initialize the weights in backbone. + Args: + pretrained (str, optional): Path to pre-trained weights. + Defaults to None. + """ + super().init_weights(pretrained, patch_padding=self.patch_padding) + + if pretrained is None: + def _init_weights(m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + self.apply(_init_weights) + + def get_num_layers(self): + return len(self.blocks) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + def forward_features(self, x): + B, C, H, W = x.shape + x, (Hp, Wp) = self.patch_embed(x) + + if self.pos_embed is not None: + # fit for multiple GPU training + # since the first element for pos embed (sin-cos manner) is zero, it will cause no difference + x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1] + + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + + x = self.last_norm(x) + + return x, Hp, Wp + + def forward(self, x1, x2): + import time + B, _, _, _ = x1.shape + x1, Hp, Wp = self.forward_features(x1) # B, N_vitpose, C + + with torch.no_grad(): + # start_time = time.time() + # self.sam_vit.eval() + x2 = self.sam_vit(x2) # B, N_sam, C + + # end_time = time.time() + # print('SAM-ViT forward time: {:.4f}秒'.format(end_time - start_time)) + + # x1 = x1 + self.cross_attn(x1, x2, x2) + + x1 = self.custom_attn_ffn(x1, x2) + + xp = x1.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous() # B, C, Hp, Wp + return xp + + def train(self, mode=True): + """Convert the model into training mode.""" + super().train(mode) + self._freeze_stages() + + +if __name__ == '__main__': + from thop import profile + from mmcv.runner import load_checkpoint + + # Prepare an image as the input + bs, c, h, w = 2, 3, 1024, 1024 + x1 = torch.randn(bs, c, 256, 192) + x2 = torch.randn(bs, c, h, w) + patch_size = 16 + device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') + + # Build model + model = ViTSam(img_size=(256, 192), patch_size=16, embed_dim=768, depth=12, num_heads=12, ratio=1, + use_checkpoint=False, mlp_ratio=4, qkv_bias=True, drop_path_rate=0.3, + samvit_checkpoint='/home/fhw/code/ViTPose/checkpoints/sam/sam_vit_b_01ec64.pth') + + + if torch.cuda.is_available(): + x1 = x1.to(device) + x2 = x2.to(device) + model = model.to(device) + + with torch.no_grad(): + model.eval() + # Inference + outputs = model(x1, x2) + print(outputs.shape) + + # Compute FLOPs & Params + print('==============================') + model.eval() + flops, params = profile(model, inputs=(x1, x2), verbose=False) + print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) + print('Params : {:.2f} M'.format(params / 1e6)) diff --git a/mmpose/models/detectors/__init__.py b/mmpose/models/detectors/__init__.py index e098209..9da32ce 100644 --- a/mmpose/models/detectors/__init__.py +++ b/mmpose/models/detectors/__init__.py @@ -10,8 +10,10 @@ from .posewarper import PoseWarper from .top_down import TopDown from .top_down_moe import TopDownMoE +from .top_down_self import TopDownSelf + __all__ = [ 'TopDown', 'AssociativeEmbedding', 'ParametricMesh', 'MultiTask', 'PoseLifter', 'Interhand3D', 'PoseWarper', 'DetectAndRegress', - 'VoxelCenterDetector', 'VoxelSinglePose', 'TopDownMoE' + 'VoxelCenterDetector', 'VoxelSinglePose', 'TopDownMoE', 'TopDownSelf' ] diff --git a/mmpose/models/detectors/top_down_self.py b/mmpose/models/detectors/top_down_self.py new file mode 100644 index 0000000..d96a4d9 --- /dev/null +++ b/mmpose/models/detectors/top_down_self.py @@ -0,0 +1,322 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings +import logging + +import mmcv +import numpy as np +from mmcv.image import imwrite +from mmcv.utils.misc import deprecated_api_warning +from mmcv.visualization.image import imshow +from mmcv_custom.checkpoint import load_checkpoint + +from mmpose.core import imshow_bboxes, imshow_keypoints +from .. import builder +from ..builder import POSENETS +from .base import BasePose + +try: + from mmcv.runner import auto_fp16 +except ImportError: + warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0' + 'Please install mmcv>=1.1.4') + from mmpose.core import auto_fp16 + + +@POSENETS.register_module() +class TopDownSelf(BasePose): + """Top-down pose detectors. + + Args: + backbone (dict): Backbone modules to extract feature. + keypoint_head (dict): Keypoint head to process feature. + train_cfg (dict): Config for training. Default: None. + test_cfg (dict): Config for testing. Default: None. + pretrained (str): Path to the pretrained models. + loss_pose (None): Deprecated arguments. Please use + `loss_keypoint` for heads instead. + """ + + def __init__(self, + backbone, + neck=None, + keypoint_head=None, + train_cfg=None, + test_cfg=None, + pretrained=None, + loss_pose=None): + super().__init__() + self.fp16_enabled = False + + self.backbone = builder.build_backbone(backbone) + + self.train_cfg = train_cfg + self.test_cfg = test_cfg + + if neck is not None: + self.neck = builder.build_neck(neck) + + if keypoint_head is not None: + keypoint_head['train_cfg'] = train_cfg + keypoint_head['test_cfg'] = test_cfg + + if 'loss_keypoint' not in keypoint_head and loss_pose is not None: + warnings.warn( + '`loss_pose` for TopDown is deprecated, ' + 'use `loss_keypoint` for heads instead. See ' + 'https://github.com/open-mmlab/mmpose/pull/382' + ' for more information.', DeprecationWarning) + keypoint_head['loss_keypoint'] = loss_pose + + self.keypoint_head = builder.build_head(keypoint_head) + + self.init_weights(pretrained=pretrained) + + @property + def with_neck(self): + """Check if has neck.""" + return hasattr(self, 'neck') + + @property + def with_keypoint(self): + """Check if has keypoint_head.""" + return hasattr(self, 'keypoint_head') + + def init_weights(self, pretrained=None): + """Weight initialization for model.""" + self.backbone.init_weights(pretrained) + if self.with_neck: + self.neck.init_weights() + if self.with_keypoint: + self.keypoint_head.init_weights() + + @auto_fp16(apply_to=('img', 'sam_img', )) + def forward(self, + img, + sam_img, # 针对sam_encoder的输入 + target=None, + target_weight=None, + img_metas=None, + return_loss=True, + return_heatmap=False, + **kwargs): + """Calls either forward_train or forward_test depending on whether + return_loss=True. Note this setting will change the expected inputs. + When `return_loss=True`, img and img_meta are single-nested (i.e. + Tensor and List[dict]), and when `resturn_loss=False`, img and img_meta + should be double nested (i.e. List[Tensor], List[List[dict]]), with + the outer list indicating test time augmentations. + + Note: + - batch_size: N + - num_keypoints: K + - num_img_channel: C (Default: 3) + - img height: imgH + - img width: imgW + - heatmaps height: H + - heatmaps weight: W + + Args: + img (torch.Tensor[NxCximgHximgW]): Input images. + target (torch.Tensor[NxKxHxW]): Target heatmaps. + target_weight (torch.Tensor[NxKx1]): Weights across + different joint types. + img_metas (list(dict)): Information about data augmentation + By default this includes: + + - "image_file: path to the image file + - "center": center of the bbox + - "scale": scale of the bbox + - "rotation": rotation of the bbox + - "bbox_score": score of bbox + return_loss (bool): Option to `return loss`. `return loss=True` + for training, `return loss=False` for validation & test. + return_heatmap (bool) : Option to return heatmap. + + Returns: + dict|tuple: if `return loss` is true, then return losses. \ + Otherwise, return predicted poses, boxes, image paths \ + and heatmaps. + """ + if return_loss: + # 可视化 img, sam_img cv可视化/PIL Image + # print(sam_img[0].shape) + # imshow(sam_img[0].cpu().numpy().transpose(1, 2, 0), wait_time=5000) + # 修改 + return self.forward_train(img, sam_img, target, target_weight, img_metas, + **kwargs) + # 修改 + return self.forward_test( + img, sam_img, img_metas, return_heatmap=return_heatmap, **kwargs) + + # 修改 + def forward_train(self, img, sam_img, target, target_weight, img_metas, **kwargs): + """Defines the computation performed at every call when training.""" + # 修改 + output = self.backbone(img, sam_img) # B, C, Hp, Wp + if self.with_neck: + output = self.neck(output) + if self.with_keypoint: + output = self.keypoint_head(output) + + # if return loss + losses = dict() + if self.with_keypoint: + keypoint_losses = self.keypoint_head.get_loss( + output, target, target_weight) + losses.update(keypoint_losses) + keypoint_accuracy = self.keypoint_head.get_accuracy( + output, target, target_weight) + losses.update(keypoint_accuracy) + + return losses + + # 修改 + def forward_test(self, img, sam_img, img_metas, return_heatmap=False, **kwargs): + """Defines the computation performed at every call when testing.""" + assert img.size(0) == len(img_metas) + batch_size, _, img_height, img_width = img.shape + if batch_size > 1: + assert 'bbox_id' in img_metas[0] + + result = {} + + # 修改 + features = self.backbone(img, sam_img) + if self.with_neck: + features = self.neck(features) + if self.with_keypoint: + output_heatmap = self.keypoint_head.inference_model( + features, flip_pairs=None) + + if self.test_cfg.get('flip_test', True): + img_flipped = img.flip(3) + # 修改 + sam_img_flipped = sam_img.flip(3) + features_flipped = self.backbone(img_flipped, sam_img_flipped) + if self.with_neck: + features_flipped = self.neck(features_flipped) + if self.with_keypoint: + output_flipped_heatmap = self.keypoint_head.inference_model( + features_flipped, img_metas[0]['flip_pairs']) + output_heatmap = (output_heatmap + + output_flipped_heatmap) * 0.5 + + if self.with_keypoint: + keypoint_result = self.keypoint_head.decode( + img_metas, output_heatmap, img_size=[img_width, img_height]) + result.update(keypoint_result) + + if not return_heatmap: + output_heatmap = None + + result['output_heatmap'] = output_heatmap + + return result + + # 修改 + def forward_dummy(self, img, sam_img): + """Used for computing network FLOPs. + + See ``tools/get_flops.py``. + + Args: + img (torch.Tensor): Input image. + + Returns: + Tensor: Output heatmaps. + """ + output = self.backbone(img, sam_img) + if self.with_neck: + output = self.neck(output) + if self.with_keypoint: + output = self.keypoint_head(output) + return output + + @deprecated_api_warning({'pose_limb_color': 'pose_link_color'}, + cls_name='TopDown') + def show_result(self, + img, + result, + skeleton=None, + kpt_score_thr=0.3, + bbox_color='green', + pose_kpt_color=None, + pose_link_color=None, + text_color='white', + radius=4, + thickness=1, + font_scale=0.5, + bbox_thickness=1, + win_name='', + show=False, + show_keypoint_weight=False, + wait_time=0, + out_file=None): + """Draw `result` over `img`. + + Args: + img (str or Tensor): The image to be displayed. + result (list[dict]): The results to draw over `img` + (bbox_result, pose_result). + skeleton (list[list]): The connection of keypoints. + skeleton is 0-based indexing. + kpt_score_thr (float, optional): Minimum score of keypoints + to be shown. Default: 0.3. + bbox_color (str or tuple or :obj:`Color`): Color of bbox lines. + pose_kpt_color (np.array[Nx3]`): Color of N keypoints. + If None, do not draw keypoints. + pose_link_color (np.array[Mx3]): Color of M links. + If None, do not draw links. + text_color (str or tuple or :obj:`Color`): Color of texts. + radius (int): Radius of circles. + thickness (int): Thickness of lines. + font_scale (float): Font scales of texts. + win_name (str): The window name. + show (bool): Whether to show the image. Default: False. + show_keypoint_weight (bool): Whether to change the transparency + using the predicted confidence scores of keypoints. + wait_time (int): Value of waitKey param. + Default: 0. + out_file (str or None): The filename to write the image. + Default: None. + + Returns: + Tensor: Visualized img, only if not `show` or `out_file`. + """ + img = mmcv.imread(img) + img = img.copy() + + bbox_result = [] + bbox_labels = [] + pose_result = [] + for res in result: + if 'bbox' in res: + bbox_result.append(res['bbox']) + bbox_labels.append(res.get('label', None)) + pose_result.append(res['keypoints']) + + if bbox_result: + bboxes = np.vstack(bbox_result) + # draw bounding boxes + imshow_bboxes( + img, + bboxes, + labels=bbox_labels, + colors=bbox_color, + text_color=text_color, + thickness=bbox_thickness, + font_scale=font_scale, + show=False) + + if pose_result: + imshow_keypoints(img, pose_result, skeleton, kpt_score_thr, + pose_kpt_color, pose_link_color, radius, + thickness) + + if show: + imshow(img, win_name, wait_time) + + if out_file is not None: + imwrite(img, out_file) + + return img diff --git a/test.py b/test.py new file mode 100644 index 0000000..fe0a338 --- /dev/null +++ b/test.py @@ -0,0 +1,17 @@ +import torch +import numpy as np + +model_1 = torch.load('/home/fhw/code/ViTPose/checkpoints/sam/sam_vit_b_01ec64.pth') +model_2 = torch.load('/home/fhw/code/ViTPose/work_dirs/ViTSam_base_coco_256x192/best_AP_epoch_1.pth') + +param_1 = model_1['image_encoder.pos_embed'].numpy() +param_2 = model_2['state_dict']['backbone.sam_vit.pos_embed'].numpy() + +# for name, param in model_2.items(): +# print(name) + +# print(model_2['state_dict']['backbone.sam_vit.pos_embed']) + +is_equal = np.array_equal(param_1, param_2) + +print(is_equal) \ No newline at end of file diff --git a/tools/train+sam.py b/tools/train+sam.py new file mode 100644 index 0000000..592c230 --- /dev/null +++ b/tools/train+sam.py @@ -0,0 +1,197 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import copy +import os +import os.path as osp +import time +import warnings + +import mmcv +import torch +from mmcv import Config, DictAction +from mmcv.runner import get_dist_info, init_dist, set_random_seed, load_checkpoint +from mmcv.utils import get_git_hash + +from mmpose import __version__ +from mmpose.apis import init_random_seed, train_model +from mmpose.datasets import build_dataset +from mmpose.models import build_posenet +from mmpose.utils import collect_env, get_root_logger, setup_multi_processes +import mmcv_custom + +def parse_args(): + parser = argparse.ArgumentParser(description='Train a pose model') + parser.add_argument('config', help='train config file path') + parser.add_argument('-c', '--checkpoint', help='checkpoint file', default='/root/autodl-tmp/code/ViTPose/checkpoints/vitpose/vitpose-b.pth') + parser.add_argument('--work-dir', help='the dir to save logs and models') + parser.add_argument( + '--resume-from', help='the checkpoint file to resume from') + parser.add_argument( + '--no-validate', + action='store_true', + help='whether not to evaluate the checkpoint during training') + group_gpus = parser.add_mutually_exclusive_group() + group_gpus.add_argument( + '--gpus', + type=int, + help='(Deprecated, please use --gpu-id) number of gpus to use ' + '(only applicable to non-distributed training)') + group_gpus.add_argument( + '--gpu-ids', + type=int, + nargs='+', + help='(Deprecated, please use --gpu-id) ids of gpus to use ' + '(only applicable to non-distributed training)') + group_gpus.add_argument( + '--gpu-id', + type=int, + default=0, + help='id of gpu to use ' + '(only applicable to non-distributed training)') + parser.add_argument('--seed', type=int, default=None, help='random seed') + parser.add_argument( + '--deterministic', + action='store_true', + help='whether to set deterministic options for CUDNN backend.') + parser.add_argument( + '--cfg-options', + nargs='+', + action=DictAction, + default={}, + help='override some settings in the used config, the key-value pair ' + 'in xxx=yyy format will be merged into config file. For example, ' + "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") + parser.add_argument( + '--launcher', + choices=['none', 'pytorch', 'slurm', 'mpi'], + default='none', + help='job launcher') + parser.add_argument('--local_rank', type=int, default=0) + parser.add_argument( + '--autoscale-lr', + action='store_true', + help='automatically scale lr with the number of gpus') + args = parser.parse_args() + if 'LOCAL_RANK' not in os.environ: + os.environ['LOCAL_RANK'] = str(args.local_rank) + + return args + + +def main(): + args = parse_args() + + cfg = Config.fromfile(args.config) + + if args.cfg_options is not None: + cfg.merge_from_dict(args.cfg_options) + + # set multi-process settings + setup_multi_processes(cfg) + + # set cudnn_benchmark + if cfg.get('cudnn_benchmark', False): + torch.backends.cudnn.benchmark = True + + # work_dir is determined in this priority: CLI > segment in file > filename + if args.work_dir is not None: + # update configs according to CLI args if args.work_dir is not None + cfg.work_dir = args.work_dir + elif cfg.get('work_dir', None) is None: + # use config filename as default work_dir if cfg.work_dir is None + cfg.work_dir = osp.join('./work_dirs', + osp.splitext(osp.basename(args.config))[0]) + if args.resume_from is not None: + cfg.resume_from = args.resume_from + if args.gpus is not None: + cfg.gpu_ids = range(1) + warnings.warn('`--gpus` is deprecated because we only support ' + 'single GPU mode in non-distributed training. ' + 'Use `gpus=1` now.') + if args.gpu_ids is not None: + cfg.gpu_ids = args.gpu_ids[0:1] + warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' + 'Because we only support single GPU mode in ' + 'non-distributed training. Use the first GPU ' + 'in `gpu_ids` now.') + if args.gpus is None and args.gpu_ids is None: + cfg.gpu_ids = [args.gpu_id] + + if args.autoscale_lr: + # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) + cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 + + # init distributed env first, since logger depends on the dist info. + if args.launcher == 'none': + distributed = False + if len(cfg.gpu_ids) > 1: + warnings.warn( + f'We treat {cfg.gpu_ids} as gpu-ids, and reset to ' + f'{cfg.gpu_ids[0:1]} as gpu-ids to avoid potential error in ' + 'non-distribute training time.') + cfg.gpu_ids = cfg.gpu_ids[0:1] + else: + distributed = True + init_dist(args.launcher, **cfg.dist_params) + # re-set gpu_ids with distributed training mode + _, world_size = get_dist_info() + cfg.gpu_ids = range(world_size) + + # create work_dir + mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) + # init the logger before other steps + timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) + log_file = osp.join(cfg.work_dir, f'{timestamp}.log') + logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) + + # init the meta dict to record some important information such as + # environment info and seed, which will be logged + meta = dict() + # log env info + env_info_dict = collect_env() + env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) + dash_line = '-' * 60 + '\n' + logger.info('Environment info:\n' + dash_line + env_info + '\n' + + dash_line) + meta['env_info'] = env_info + + # log some basic info + logger.info(f'Distributed training: {distributed}') + logger.info(f'Config:\n{cfg.pretty_text}') + + # set random seeds + seed = init_random_seed(args.seed) + logger.info(f'Set random seed to {seed}, ' + f'deterministic: {args.deterministic}') + set_random_seed(seed, deterministic=args.deterministic) + cfg.seed = seed + meta['seed'] = seed + + model = build_posenet(cfg.model) + load_checkpoint(model, args.checkpoint, map_location='cpu') + datasets = [build_dataset(cfg.data.train)] + + if len(cfg.workflow) == 2: + val_dataset = copy.deepcopy(cfg.data.val) + val_dataset.pipeline = cfg.data.train.pipeline + datasets.append(build_dataset(val_dataset)) + + if cfg.checkpoint_config is not None: + # save mmpose version, config file content + # checkpoints as meta data + cfg.checkpoint_config.meta = dict( + mmpose_version=__version__ + get_git_hash(digits=7), + config=cfg.pretty_text, + ) + train_model( + model, + datasets, + cfg, + distributed=distributed, + validate=(not args.no_validate), + timestamp=timestamp, + meta=meta) + + +if __name__ == '__main__': + main() diff --git a/work_dirs/ViTSam_base_coco_256x192/20240706_095205.log.json b/work_dirs/ViTSam_base_coco_256x192/20240706_095205.log.json new file mode 100644 index 0000000..406182f --- /dev/null +++ b/work_dirs/ViTSam_base_coco_256x192/20240706_095205.log.json @@ -0,0 +1,1440 @@ +{"env_info": "sys.platform: linux\nPython: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1: NVIDIA GeForce RTX 3090\nCUDA_HOME: /usr/local/cuda-11.3\nNVCC: Build cuda_11.3.r11.3/compiler.29920130_0\nGCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0\nPyTorch: 1.7.1+cu110\nPyTorch compiling details: PyTorch built with:\n - GCC 7.3\n - C++ Version: 201402\n - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.0\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80\n - CuDNN 8.0.5\n - Magma 2.5.2\n - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n\nTorchVision: 0.8.2+cu110\nOpenCV: 4.9.0\nMMCV: 1.3.9\nMMCV Compiler: GCC 7.5\nMMCV CUDA Compiler: 11.3\nMMPose: 0.24.0+d521645", "seed": 56500045, "hook_msgs": {}} +{"mode": "train", "epoch": 1, "iter": 50, "lr": 0.0, "memory": 17294, "data_time": 0.05822, "heatmap_loss": 0.00056, "acc_pose": 0.84135, "loss": 0.00056, "grad_norm": 0.00678, "time": 0.64081} +{"mode": "train", "epoch": 1, "iter": 100, "lr": 0.0, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00054, "acc_pose": 0.84526, "loss": 0.00054, "grad_norm": 0.00726, "time": 0.58603} +{"mode": "train", "epoch": 1, "iter": 150, "lr": 0.0, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00057, "acc_pose": 0.83382, "loss": 0.00057, "grad_norm": 0.0072, "time": 0.59129} +{"mode": "train", "epoch": 1, "iter": 200, "lr": 0.0, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00057, "acc_pose": 0.83462, "loss": 0.00057, "grad_norm": 0.00746, "time": 0.59377} +{"mode": "train", "epoch": 1, "iter": 250, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00063, "acc_pose": 0.83501, "loss": 0.00063, "grad_norm": 0.00694, "time": 0.59613} +{"mode": "train", "epoch": 1, "iter": 300, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00061, "acc_pose": 0.81612, "loss": 0.00061, "grad_norm": 0.00772, "time": 0.6048} +{"mode": "train", "epoch": 1, "iter": 350, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00071, "acc_pose": 0.78763, "loss": 0.00071, "grad_norm": 0.0093, "time": 0.63404} +{"mode": "train", "epoch": 1, "iter": 400, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00069, "acc_pose": 0.77751, "loss": 0.00069, "grad_norm": 0.00925, "time": 0.6107} +{"mode": "train", "epoch": 1, "iter": 450, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00074, "acc_pose": 0.78306, "loss": 0.00074, "grad_norm": 0.00903, "time": 0.60889} +{"mode": "train", "epoch": 1, "iter": 500, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00074, "acc_pose": 0.78181, "loss": 0.00074, "grad_norm": 0.00886, "time": 0.65455} +{"mode": "train", "epoch": 1, "iter": 550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00073, "acc_pose": 0.78199, "loss": 0.00073, "grad_norm": 0.00981, "time": 0.62472} +{"mode": "train", "epoch": 1, "iter": 600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00073, "acc_pose": 0.79084, "loss": 0.00073, "grad_norm": 0.00863, "time": 0.6097} +{"mode": "train", "epoch": 1, "iter": 650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00072, "acc_pose": 0.79155, "loss": 0.00072, "grad_norm": 0.00806, "time": 0.60888} +{"mode": "train", "epoch": 1, "iter": 700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00079, "acc_pose": 0.77492, "loss": 0.00079, "grad_norm": 0.00896, "time": 0.61711} +{"mode": "train", "epoch": 1, "iter": 750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00078, "acc_pose": 0.76637, "loss": 0.00078, "grad_norm": 0.00951, "time": 0.61931} +{"mode": "train", "epoch": 1, "iter": 800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.75587, "loss": 0.00083, "grad_norm": 0.01069, "time": 0.64105} +{"mode": "train", "epoch": 1, "iter": 850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00077, "acc_pose": 0.77284, "loss": 0.00077, "grad_norm": 0.00856, "time": 0.61411} +{"mode": "train", "epoch": 1, "iter": 900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.78222, "loss": 0.00081, "grad_norm": 0.00968, "time": 0.60993} +{"mode": "train", "epoch": 1, "iter": 950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.74488, "loss": 0.00083, "grad_norm": 0.00819, "time": 0.6125} +{"mode": "train", "epoch": 1, "iter": 1000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00076, "acc_pose": 0.76651, "loss": 0.00076, "grad_norm": 0.00911, "time": 0.65506} +{"mode": "train", "epoch": 1, "iter": 1050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00086, "acc_pose": 0.74585, "loss": 0.00086, "grad_norm": 0.00976, "time": 0.61666} +{"mode": "train", "epoch": 1, "iter": 1100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00079, "acc_pose": 0.75287, "loss": 0.00079, "grad_norm": 0.00756, "time": 0.60988} +{"mode": "train", "epoch": 1, "iter": 1150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00079, "acc_pose": 0.7354, "loss": 0.00079, "grad_norm": 0.00832, "time": 0.64009} +{"mode": "train", "epoch": 1, "iter": 1200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.75877, "loss": 0.00081, "grad_norm": 0.00893, "time": 0.61823} +{"mode": "train", "epoch": 1, "iter": 1250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00079, "acc_pose": 0.76265, "loss": 0.00079, "grad_norm": 0.00758, "time": 0.61219} +{"mode": "train", "epoch": 1, "iter": 1300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00078, "acc_pose": 0.7775, "loss": 0.00078, "grad_norm": 0.00906, "time": 0.61273} +{"mode": "train", "epoch": 1, "iter": 1350, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00083, "acc_pose": 0.74369, "loss": 0.00083, "grad_norm": 0.00827, "time": 0.63626} +{"mode": "train", "epoch": 1, "iter": 1400, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00081, "acc_pose": 0.7605, "loss": 0.00081, "grad_norm": 0.01099, "time": 0.62649} +{"mode": "train", "epoch": 1, "iter": 1450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.74079, "loss": 0.00082, "grad_norm": 0.00811, "time": 0.60959} +{"mode": "train", "epoch": 1, "iter": 1500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00075, "acc_pose": 0.7602, "loss": 0.00075, "grad_norm": 0.00778, "time": 0.63872} +{"mode": "train", "epoch": 1, "iter": 1550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.74441, "loss": 0.00088, "grad_norm": 0.00871, "time": 0.62412} +{"mode": "train", "epoch": 1, "iter": 1600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.73199, "loss": 0.00087, "grad_norm": 0.0088, "time": 0.60916} +{"mode": "train", "epoch": 1, "iter": 1650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00076, "acc_pose": 0.77436, "loss": 0.00076, "grad_norm": 0.0077, "time": 0.63054} +{"mode": "train", "epoch": 1, "iter": 1700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0008, "acc_pose": 0.75902, "loss": 0.0008, "grad_norm": 0.00857, "time": 0.62595} +{"mode": "train", "epoch": 1, "iter": 1750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.73604, "loss": 0.00081, "grad_norm": 0.00735, "time": 0.62015} +{"mode": "train", "epoch": 1, "iter": 1800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.74847, "loss": 0.00085, "grad_norm": 0.00894, "time": 0.61032} +{"mode": "train", "epoch": 1, "iter": 1850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.72961, "loss": 0.00087, "grad_norm": 0.00923, "time": 0.62285} +{"mode": "train", "epoch": 1, "iter": 1900, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00086, "acc_pose": 0.74597, "loss": 0.00086, "grad_norm": 0.00836, "time": 0.62711} +{"mode": "train", "epoch": 1, "iter": 1950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70947, "loss": 0.00093, "grad_norm": 0.00827, "time": 0.62133} +{"mode": "train", "epoch": 1, "iter": 2000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.74247, "loss": 0.00081, "grad_norm": 0.00774, "time": 0.61626} +{"mode": "train", "epoch": 1, "iter": 2050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73384, "loss": 0.00085, "grad_norm": 0.00954, "time": 0.61521} +{"mode": "train", "epoch": 1, "iter": 2100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00077, "acc_pose": 0.73811, "loss": 0.00077, "grad_norm": 0.00879, "time": 0.61609} +{"mode": "train", "epoch": 1, "iter": 2150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00078, "acc_pose": 0.74998, "loss": 0.00078, "grad_norm": 0.00749, "time": 0.62296} +{"mode": "train", "epoch": 1, "iter": 2200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.73453, "loss": 0.00089, "grad_norm": 0.00937, "time": 0.62644} +{"mode": "train", "epoch": 1, "iter": 2250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.73417, "loss": 0.00084, "grad_norm": 0.00917, "time": 0.62626} +{"mode": "train", "epoch": 1, "iter": 2300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.7337, "loss": 0.00083, "grad_norm": 0.00861, "time": 0.62136} +{"mode": "train", "epoch": 1, "iter": 2350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00076, "acc_pose": 0.76779, "loss": 0.00076, "grad_norm": 0.00734, "time": 0.61485} +{"mode": "train", "epoch": 1, "iter": 2400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0008, "acc_pose": 0.74795, "loss": 0.0008, "grad_norm": 0.0084, "time": 0.61354} +{"mode": "train", "epoch": 1, "iter": 2450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00075, "acc_pose": 0.76814, "loss": 0.00075, "grad_norm": 0.00898, "time": 0.61633} +{"mode": "train", "epoch": 1, "iter": 2500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.73715, "loss": 0.00084, "grad_norm": 0.0085, "time": 0.64959} +{"mode": "train", "epoch": 1, "iter": 2550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.73198, "loss": 0.00083, "grad_norm": 0.00845, "time": 0.61616} +{"mode": "train", "epoch": 1, "iter": 2600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00076, "acc_pose": 0.77296, "loss": 0.00076, "grad_norm": 0.00781, "time": 0.61139} +{"mode": "train", "epoch": 1, "iter": 2650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73714, "loss": 0.00085, "grad_norm": 0.00761, "time": 0.6112} +{"mode": "train", "epoch": 1, "iter": 2700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73384, "loss": 0.00085, "grad_norm": 0.00798, "time": 0.61831} +{"mode": "train", "epoch": 1, "iter": 2750, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00082, "acc_pose": 0.7179, "loss": 0.00082, "grad_norm": 0.00783, "time": 0.62412} +{"mode": "train", "epoch": 1, "iter": 2800, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00079, "acc_pose": 0.7496, "loss": 0.00079, "grad_norm": 0.00754, "time": 0.62392} +{"mode": "train", "epoch": 1, "iter": 2850, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.0008, "acc_pose": 0.74367, "loss": 0.0008, "grad_norm": 0.009, "time": 0.6234} +{"mode": "train", "epoch": 1, "iter": 2900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.73636, "loss": 0.00083, "grad_norm": 0.00886, "time": 0.61294} +{"mode": "train", "epoch": 1, "iter": 2950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0008, "acc_pose": 0.75073, "loss": 0.0008, "grad_norm": 0.00773, "time": 0.61557} +{"mode": "train", "epoch": 1, "iter": 3000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.75006, "loss": 0.00081, "grad_norm": 0.00761, "time": 0.62308} +{"mode": "train", "epoch": 1, "iter": 3050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.74767, "loss": 0.00081, "grad_norm": 0.0089, "time": 0.62392} +{"mode": "train", "epoch": 1, "iter": 3100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.7608, "loss": 0.00082, "grad_norm": 0.0093, "time": 0.62426} +{"mode": "train", "epoch": 1, "iter": 3150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73471, "loss": 0.00085, "grad_norm": 0.0081, "time": 0.62232} +{"mode": "train", "epoch": 1, "iter": 3200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.73856, "loss": 0.00082, "grad_norm": 0.00765, "time": 0.61784} +{"mode": "train", "epoch": 1, "iter": 3250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.7032, "loss": 0.00089, "grad_norm": 0.00928, "time": 0.6177} +{"mode": "train", "epoch": 1, "iter": 3300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73722, "loss": 0.00085, "grad_norm": 0.00733, "time": 0.61755} +{"mode": "train", "epoch": 1, "iter": 3350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.76048, "loss": 0.00081, "grad_norm": 0.00821, "time": 0.61926} +{"mode": "train", "epoch": 1, "iter": 3400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.73297, "loss": 0.00081, "grad_norm": 0.0084, "time": 0.61795} +{"mode": "train", "epoch": 1, "iter": 3450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.71143, "loss": 0.00085, "grad_norm": 0.00827, "time": 0.65937} +{"mode": "train", "epoch": 1, "iter": 3500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.74483, "loss": 0.00084, "grad_norm": 0.0077, "time": 0.61379} +{"mode": "train", "epoch": 1, "iter": 3550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.73919, "loss": 0.00086, "grad_norm": 0.00821, "time": 0.61092} +{"mode": "train", "epoch": 1, "iter": 3600, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.0009, "acc_pose": 0.71086, "loss": 0.0009, "grad_norm": 0.00881, "time": 0.62012} +{"mode": "train", "epoch": 1, "iter": 3650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.74335, "loss": 0.00082, "grad_norm": 0.0087, "time": 0.62476} +{"mode": "train", "epoch": 1, "iter": 3700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.73613, "loss": 0.00081, "grad_norm": 0.00831, "time": 0.62452} +{"mode": "train", "epoch": 1, "iter": 3750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.75069, "loss": 0.00086, "grad_norm": 0.00824, "time": 0.62343} +{"mode": "train", "epoch": 1, "iter": 3800, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00085, "acc_pose": 0.72937, "loss": 0.00085, "grad_norm": 0.00763, "time": 0.61741} +{"mode": "train", "epoch": 1, "iter": 3850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.73551, "loss": 0.0009, "grad_norm": 0.00812, "time": 0.60996} +{"mode": "train", "epoch": 1, "iter": 3900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.74804, "loss": 0.00088, "grad_norm": 0.00918, "time": 0.62786} +{"mode": "train", "epoch": 1, "iter": 3950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.74907, "loss": 0.00085, "grad_norm": 0.00791, "time": 0.63534} +{"mode": "train", "epoch": 1, "iter": 4000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.74949, "loss": 0.00083, "grad_norm": 0.00755, "time": 0.61905} +{"mode": "train", "epoch": 1, "iter": 4050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.71618, "loss": 0.00088, "grad_norm": 0.00793, "time": 0.61111} +{"mode": "train", "epoch": 1, "iter": 4100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.74852, "loss": 0.00087, "grad_norm": 0.00793, "time": 0.61854} +{"mode": "train", "epoch": 1, "iter": 4150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.74266, "loss": 0.00082, "grad_norm": 0.00744, "time": 0.64407} +{"mode": "train", "epoch": 1, "iter": 4200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.7435, "loss": 0.00082, "grad_norm": 0.00819, "time": 0.61952} +{"mode": "train", "epoch": 1, "iter": 4250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.70904, "loss": 0.00084, "grad_norm": 0.0082, "time": 0.61538} +{"mode": "train", "epoch": 1, "iter": 4300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.72897, "loss": 0.00085, "grad_norm": 0.00745, "time": 0.61668} +{"mode": "train", "epoch": 1, "iter": 4350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.73819, "loss": 0.00084, "grad_norm": 0.00754, "time": 0.61599} +{"mode": "train", "epoch": 1, "iter": 4400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00079, "acc_pose": 0.74593, "loss": 0.00079, "grad_norm": 0.00673, "time": 0.6508} +{"mode": "train", "epoch": 1, "iter": 4450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.75461, "loss": 0.00087, "grad_norm": 0.00848, "time": 0.62133} +{"mode": "train", "epoch": 1, "iter": 4500, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00089, "acc_pose": 0.73446, "loss": 0.00089, "grad_norm": 0.00957, "time": 0.61224} +{"mode": "train", "epoch": 1, "iter": 4550, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00089, "acc_pose": 0.72163, "loss": 0.00089, "grad_norm": 0.00762, "time": 0.61172} +{"mode": "train", "epoch": 1, "iter": 4600, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00088, "acc_pose": 0.72359, "loss": 0.00088, "grad_norm": 0.00837, "time": 0.66184} +{"mode": "train", "epoch": 1, "iter": 4650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.73064, "loss": 0.00084, "grad_norm": 0.00836, "time": 0.61704} +{"mode": "train", "epoch": 1, "iter": 4700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70843, "loss": 0.00093, "grad_norm": 0.00923, "time": 0.61051} +{"mode": "train", "epoch": 1, "iter": 4750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.71465, "loss": 0.00084, "grad_norm": 0.00834, "time": 0.63221} +{"mode": "train", "epoch": 1, "iter": 4800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.71164, "loss": 0.00087, "grad_norm": 0.00815, "time": 0.63441} +{"mode": "train", "epoch": 1, "iter": 4850, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00088, "acc_pose": 0.70394, "loss": 0.00088, "grad_norm": 0.00762, "time": 0.61527} +{"mode": "train", "epoch": 1, "iter": 4900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.73432, "loss": 0.00083, "grad_norm": 0.00697, "time": 0.61553} +{"mode": "train", "epoch": 1, "iter": 4950, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00087, "acc_pose": 0.74321, "loss": 0.00087, "grad_norm": 0.0078, "time": 0.61506} +{"mode": "train", "epoch": 1, "iter": 5000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.72917, "loss": 0.00087, "grad_norm": 0.00776, "time": 0.62182} +{"mode": "train", "epoch": 1, "iter": 5050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.71652, "loss": 0.00081, "grad_norm": 0.00788, "time": 0.62832} +{"mode": "train", "epoch": 1, "iter": 5100, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00081, "acc_pose": 0.72549, "loss": 0.00081, "grad_norm": 0.00716, "time": 0.62723} +{"mode": "train", "epoch": 1, "iter": 5150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.71568, "loss": 0.00086, "grad_norm": 0.00734, "time": 0.62243} +{"mode": "train", "epoch": 1, "iter": 5200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.69074, "loss": 0.00086, "grad_norm": 0.00763, "time": 0.62112} +{"mode": "train", "epoch": 1, "iter": 5250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.72687, "loss": 0.00086, "grad_norm": 0.00765, "time": 0.62136} +{"mode": "train", "epoch": 1, "iter": 5300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.74915, "loss": 0.00081, "grad_norm": 0.00939, "time": 0.62156} +{"mode": "train", "epoch": 1, "iter": 5350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.74797, "loss": 0.00087, "grad_norm": 0.00714, "time": 0.62169} +{"mode": "train", "epoch": 1, "iter": 5400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.70894, "loss": 0.00087, "grad_norm": 0.00847, "time": 0.62049} +{"mode": "train", "epoch": 1, "iter": 5450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.72449, "loss": 0.00088, "grad_norm": 0.00835, "time": 0.62066} +{"mode": "train", "epoch": 1, "iter": 5500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.72466, "loss": 0.00089, "grad_norm": 0.00722, "time": 0.62014} +{"mode": "train", "epoch": 1, "iter": 5550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.74103, "loss": 0.00084, "grad_norm": 0.00726, "time": 0.61742} +{"mode": "train", "epoch": 1, "iter": 5600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.71536, "loss": 0.00088, "grad_norm": 0.00747, "time": 0.61532} +{"mode": "train", "epoch": 1, "iter": 5650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.72643, "loss": 0.00088, "grad_norm": 0.00775, "time": 0.65147} +{"mode": "train", "epoch": 1, "iter": 5700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.72304, "loss": 0.00088, "grad_norm": 0.00785, "time": 0.62821} +{"mode": "train", "epoch": 1, "iter": 5750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.72051, "loss": 0.00088, "grad_norm": 0.00977, "time": 0.61112} +{"mode": "train", "epoch": 1, "iter": 5800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.72537, "loss": 0.0009, "grad_norm": 0.00778, "time": 0.60908} +{"mode": "train", "epoch": 1, "iter": 5850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.71431, "loss": 0.00087, "grad_norm": 0.00729, "time": 0.6511} +{"mode": "train", "epoch": 1, "iter": 5900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.71551, "loss": 0.00084, "grad_norm": 0.0077, "time": 0.6265} +{"mode": "train", "epoch": 1, "iter": 5950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.74759, "loss": 0.00086, "grad_norm": 0.00734, "time": 0.61224} +{"mode": "train", "epoch": 1, "iter": 6000, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00089, "acc_pose": 0.7265, "loss": 0.00089, "grad_norm": 0.00871, "time": 0.61232} +{"mode": "train", "epoch": 1, "iter": 6050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.7254, "loss": 0.00089, "grad_norm": 0.0071, "time": 0.63522} +{"mode": "train", "epoch": 1, "iter": 6100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.71598, "loss": 0.00087, "grad_norm": 0.00828, "time": 0.62382} +{"mode": "train", "epoch": 1, "iter": 6150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.7047, "loss": 0.0009, "grad_norm": 0.00807, "time": 0.61287} +{"mode": "train", "epoch": 1, "iter": 6200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00085, "acc_pose": 0.72813, "loss": 0.00085, "grad_norm": 0.00681, "time": 0.6289} +{"mode": "train", "epoch": 1, "iter": 6250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73418, "loss": 0.00085, "grad_norm": 0.00728, "time": 0.63147} +{"mode": "train", "epoch": 1, "iter": 6300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73396, "loss": 0.00085, "grad_norm": 0.00776, "time": 0.61505} +{"mode": "train", "epoch": 1, "iter": 6350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.73434, "loss": 0.0009, "grad_norm": 0.00783, "time": 0.6157} +{"mode": "train", "epoch": 1, "iter": 6400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.70272, "loss": 0.00085, "grad_norm": 0.00823, "time": 0.61494} +{"mode": "train", "epoch": 1, "iter": 6450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.72969, "loss": 0.00085, "grad_norm": 0.00706, "time": 0.6243} +{"mode": "train", "epoch": 1, "iter": 6500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.7192, "loss": 0.00084, "grad_norm": 0.00696, "time": 0.63127} +{"mode": "train", "epoch": 1, "iter": 6550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.72073, "loss": 0.00086, "grad_norm": 0.00815, "time": 0.62259} +{"mode": "train", "epoch": 1, "iter": 6600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.70741, "loss": 0.00084, "grad_norm": 0.00698, "time": 0.61946} +{"mode": "train", "epoch": 1, "iter": 6650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.73447, "loss": 0.00089, "grad_norm": 0.00817, "time": 0.61627} +{"mode": "train", "epoch": 1, "iter": 6700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00086, "acc_pose": 0.73414, "loss": 0.00086, "grad_norm": 0.00731, "time": 0.62578} +{"mode": "train", "epoch": 1, "iter": 6750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.72585, "loss": 0.00085, "grad_norm": 0.00696, "time": 0.64982} +{"mode": "train", "epoch": 1, "iter": 6800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.70964, "loss": 0.00096, "grad_norm": 0.00718, "time": 0.61483} +{"mode": "train", "epoch": 1, "iter": 6850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.72501, "loss": 0.00088, "grad_norm": 0.00824, "time": 0.61277} +{"mode": "train", "epoch": 1, "iter": 6900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.69635, "loss": 0.00089, "grad_norm": 0.00837, "time": 0.61674} +{"mode": "train", "epoch": 1, "iter": 6950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.70867, "loss": 0.00089, "grad_norm": 0.00712, "time": 0.62628} +{"mode": "train", "epoch": 1, "iter": 7000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00085, "acc_pose": 0.72901, "loss": 0.00085, "grad_norm": 0.00777, "time": 0.62643} +{"mode": "train", "epoch": 1, "iter": 7050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.73944, "loss": 0.00088, "grad_norm": 0.00777, "time": 0.62049} +{"mode": "train", "epoch": 1, "iter": 7100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73125, "loss": 0.00085, "grad_norm": 0.00838, "time": 0.61981} +{"mode": "train", "epoch": 1, "iter": 7150, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00089, "acc_pose": 0.73098, "loss": 0.00089, "grad_norm": 0.00755, "time": 0.61679} +{"mode": "train", "epoch": 1, "iter": 7200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.70781, "loss": 0.00088, "grad_norm": 0.00755, "time": 0.62881} +{"mode": "train", "epoch": 1, "iter": 7250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.71795, "loss": 0.00086, "grad_norm": 0.00941, "time": 0.64725} +{"mode": "train", "epoch": 1, "iter": 7300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70844, "loss": 0.00093, "grad_norm": 0.00779, "time": 0.61377} +{"mode": "train", "epoch": 1, "iter": 7350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.71951, "loss": 0.00087, "grad_norm": 0.00756, "time": 0.61327} +{"mode": "train", "epoch": 1, "iter": 7400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.71662, "loss": 0.00086, "grad_norm": 0.00656, "time": 0.65501} +{"mode": "train", "epoch": 1, "iter": 7450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.71626, "loss": 0.00086, "grad_norm": 0.00806, "time": 0.62956} +{"mode": "train", "epoch": 1, "iter": 7500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.69171, "loss": 0.00091, "grad_norm": 0.00788, "time": 0.60787} +{"mode": "train", "epoch": 1, "iter": 7550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.72488, "loss": 0.00088, "grad_norm": 0.00678, "time": 0.6164} +{"mode": "train", "epoch": 1, "iter": 7600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.71408, "loss": 0.00083, "grad_norm": 0.00715, "time": 0.62571} +{"mode": "train", "epoch": 1, "iter": 7650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.72012, "loss": 0.00087, "grad_norm": 0.00668, "time": 0.62479} +{"mode": "train", "epoch": 1, "iter": 7700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.68844, "loss": 0.00091, "grad_norm": 0.00803, "time": 0.61862} +{"mode": "train", "epoch": 1, "iter": 7750, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00084, "acc_pose": 0.74385, "loss": 0.00084, "grad_norm": 0.00834, "time": 0.61346} +{"mode": "train", "epoch": 1, "iter": 7800, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00088, "acc_pose": 0.70138, "loss": 0.00088, "grad_norm": 0.00747, "time": 0.61744} +{"mode": "train", "epoch": 1, "iter": 7850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71297, "loss": 0.00089, "grad_norm": 0.00817, "time": 0.62827} +{"mode": "train", "epoch": 1, "iter": 7900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.74398, "loss": 0.00084, "grad_norm": 0.00744, "time": 0.65404} +{"mode": "train", "epoch": 1, "iter": 7950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70707, "loss": 0.0009, "grad_norm": 0.0091, "time": 0.61735} +{"mode": "train", "epoch": 1, "iter": 8000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.72173, "loss": 0.00086, "grad_norm": 0.00827, "time": 0.61582} +{"mode": "train", "epoch": 1, "iter": 8050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.70284, "loss": 0.00088, "grad_norm": 0.00938, "time": 0.61574} +{"mode": "train", "epoch": 1, "iter": 8100, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.0009, "acc_pose": 0.73595, "loss": 0.0009, "grad_norm": 0.00795, "time": 0.61532} +{"mode": "train", "epoch": 1, "iter": 8150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.72323, "loss": 0.00087, "grad_norm": 0.00785, "time": 0.6628} +{"mode": "train", "epoch": 1, "iter": 8200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.71357, "loss": 0.0009, "grad_norm": 0.00771, "time": 0.61789} +{"mode": "train", "epoch": 1, "iter": 8250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70572, "loss": 0.0009, "grad_norm": 0.00725, "time": 0.61513} +{"mode": "train", "epoch": 1, "iter": 8300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71856, "loss": 0.00089, "grad_norm": 0.00829, "time": 0.61469} +{"mode": "train", "epoch": 1, "iter": 8350, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00088, "acc_pose": 0.72599, "loss": 0.00088, "grad_norm": 0.00799, "time": 0.62751} +{"mode": "train", "epoch": 1, "iter": 8400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.71861, "loss": 0.00087, "grad_norm": 0.00635, "time": 0.62927} +{"mode": "train", "epoch": 1, "iter": 8450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.69838, "loss": 0.00093, "grad_norm": 0.00851, "time": 0.62885} +{"mode": "train", "epoch": 1, "iter": 8500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71057, "loss": 0.00089, "grad_norm": 0.00798, "time": 0.62068} +{"mode": "train", "epoch": 1, "iter": 8550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.70739, "loss": 0.00089, "grad_norm": 0.00731, "time": 0.61693} +{"mode": "train", "epoch": 1, "iter": 8600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70391, "loss": 0.0009, "grad_norm": 0.00906, "time": 0.61641} +{"mode": "train", "epoch": 1, "iter": 8650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70394, "loss": 0.0009, "grad_norm": 0.00767, "time": 0.61777} +{"mode": "train", "epoch": 1, "iter": 8700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70347, "loss": 0.00093, "grad_norm": 0.00812, "time": 0.65627} +{"mode": "train", "epoch": 1, "iter": 8750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.68988, "loss": 0.00094, "grad_norm": 0.00758, "time": 0.62489} +{"mode": "train", "epoch": 1, "iter": 8800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.71712, "loss": 0.00091, "grad_norm": 0.00763, "time": 0.61121} +{"mode": "train", "epoch": 1, "iter": 8850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.70461, "loss": 0.00087, "grad_norm": 0.007, "time": 0.63747} +{"mode": "train", "epoch": 1, "iter": 8900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.70187, "loss": 0.00087, "grad_norm": 0.0074, "time": 0.63384} +{"mode": "train", "epoch": 1, "iter": 8950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.72262, "loss": 0.00092, "grad_norm": 0.00723, "time": 0.62112} +{"mode": "train", "epoch": 1, "iter": 9000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00082, "acc_pose": 0.73969, "loss": 0.00082, "grad_norm": 0.00787, "time": 0.61853} +{"mode": "train", "epoch": 1, "iter": 9050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.70847, "loss": 0.001, "grad_norm": 0.00851, "time": 0.61828} +{"mode": "train", "epoch": 1, "iter": 9100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.72385, "loss": 0.00083, "grad_norm": 0.00716, "time": 0.61804} +{"mode": "train", "epoch": 1, "iter": 9150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71678, "loss": 0.00089, "grad_norm": 0.00859, "time": 0.61875} +{"mode": "train", "epoch": 1, "iter": 9200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.70919, "loss": 0.00095, "grad_norm": 0.00798, "time": 0.6207} +{"mode": "train", "epoch": 1, "iter": 9250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.73096, "loss": 0.00087, "grad_norm": 0.00762, "time": 0.62315} +{"mode": "train", "epoch": 1, "iter": 9300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.73255, "loss": 0.00083, "grad_norm": 0.00703, "time": 0.62484} +{"mode": "train", "epoch": 1, "iter": 9350, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00086, "acc_pose": 0.71145, "loss": 0.00086, "grad_norm": 0.00689, "time": 0.62703} +{"mode": "train", "epoch": 1, "iter": 9400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.70238, "loss": 0.00091, "grad_norm": 0.00829, "time": 0.62284} +{"mode": "train", "epoch": 1, "iter": 9450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.70945, "loss": 0.00088, "grad_norm": 0.00752, "time": 0.62167} +{"mode": "train", "epoch": 1, "iter": 9500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.71645, "loss": 0.00092, "grad_norm": 0.00749, "time": 0.62207} +{"mode": "train", "epoch": 1, "iter": 9550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.68809, "loss": 0.00098, "grad_norm": 0.00906, "time": 0.62158} +{"mode": "train", "epoch": 1, "iter": 9600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.69415, "loss": 0.00089, "grad_norm": 0.00772, "time": 0.61718} +{"mode": "train", "epoch": 1, "iter": 9650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.73961, "loss": 0.00086, "grad_norm": 0.00754, "time": 0.61712} +{"mode": "train", "epoch": 1, "iter": 9700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.69534, "loss": 0.00089, "grad_norm": 0.00746, "time": 0.61686} +{"mode": "train", "epoch": 1, "iter": 9750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.70636, "loss": 0.00092, "grad_norm": 0.00808, "time": 0.62535} +{"mode": "train", "epoch": 1, "iter": 9800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.71355, "loss": 0.00085, "grad_norm": 0.007, "time": 0.65254} +{"mode": "train", "epoch": 1, "iter": 9850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.6819, "loss": 0.00092, "grad_norm": 0.00859, "time": 0.61568} +{"mode": "train", "epoch": 1, "iter": 9900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.70002, "loss": 0.00095, "grad_norm": 0.00842, "time": 0.61287} +{"mode": "train", "epoch": 1, "iter": 9950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70707, "loss": 0.0009, "grad_norm": 0.00718, "time": 0.62631} +{"mode": "train", "epoch": 1, "iter": 10000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68598, "loss": 0.00093, "grad_norm": 0.00794, "time": 0.62518} +{"mode": "train", "epoch": 1, "iter": 10050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.71056, "loss": 0.0009, "grad_norm": 0.00739, "time": 0.62527} +{"mode": "train", "epoch": 1, "iter": 10100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.70981, "loss": 0.00085, "grad_norm": 0.00732, "time": 0.6247} +{"mode": "train", "epoch": 1, "iter": 10150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.66481, "loss": 0.00094, "grad_norm": 0.0078, "time": 0.62539} +{"mode": "train", "epoch": 1, "iter": 10200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.69596, "loss": 0.00091, "grad_norm": 0.00711, "time": 0.62473} +{"mode": "train", "epoch": 1, "iter": 10250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.74673, "loss": 0.00091, "grad_norm": 0.0083, "time": 0.62443} +{"mode": "train", "epoch": 1, "iter": 10300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.69926, "loss": 0.00092, "grad_norm": 0.00752, "time": 0.6199} +{"mode": "train", "epoch": 1, "iter": 10350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.69162, "loss": 0.00094, "grad_norm": 0.00813, "time": 0.61954} +{"mode": "train", "epoch": 1, "iter": 10400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00084, "acc_pose": 0.72752, "loss": 0.00084, "grad_norm": 0.00726, "time": 0.61993} +{"mode": "train", "epoch": 1, "iter": 10450, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00082, "acc_pose": 0.72518, "loss": 0.00082, "grad_norm": 0.00684, "time": 0.6491} +{"mode": "train", "epoch": 1, "iter": 10500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.71862, "loss": 0.00091, "grad_norm": 0.00776, "time": 0.62471} +{"mode": "train", "epoch": 1, "iter": 10550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.72845, "loss": 0.00087, "grad_norm": 0.00697, "time": 0.61631} +{"mode": "train", "epoch": 1, "iter": 10600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.69792, "loss": 0.00094, "grad_norm": 0.0077, "time": 0.61614} +{"mode": "train", "epoch": 1, "iter": 10650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.73443, "loss": 0.00087, "grad_norm": 0.00729, "time": 0.61764} +{"mode": "train", "epoch": 1, "iter": 10700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.69946, "loss": 0.00093, "grad_norm": 0.00749, "time": 0.65281} +{"mode": "train", "epoch": 1, "iter": 10750, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.0009, "acc_pose": 0.71288, "loss": 0.0009, "grad_norm": 0.00738, "time": 0.62149} +{"mode": "train", "epoch": 1, "iter": 10800, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00098, "acc_pose": 0.70285, "loss": 0.00098, "grad_norm": 0.00841, "time": 0.62016} +{"mode": "train", "epoch": 1, "iter": 10850, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00092, "acc_pose": 0.69773, "loss": 0.00092, "grad_norm": 0.00824, "time": 0.62054} +{"mode": "train", "epoch": 1, "iter": 10900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.70532, "loss": 0.00091, "grad_norm": 0.00806, "time": 0.61635} +{"mode": "train", "epoch": 1, "iter": 10950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.72564, "loss": 0.0009, "grad_norm": 0.00667, "time": 0.63128} +{"mode": "train", "epoch": 1, "iter": 11000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.71533, "loss": 0.00086, "grad_norm": 0.00626, "time": 0.6473} +{"mode": "train", "epoch": 1, "iter": 11050, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00096, "acc_pose": 0.70418, "loss": 0.00096, "grad_norm": 0.00749, "time": 0.6203} +{"mode": "train", "epoch": 1, "iter": 11100, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00089, "acc_pose": 0.70589, "loss": 0.00089, "grad_norm": 0.00662, "time": 0.61888} +{"mode": "train", "epoch": 1, "iter": 11150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.67889, "loss": 0.0009, "grad_norm": 0.00762, "time": 0.61929} +{"mode": "train", "epoch": 1, "iter": 11200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.72101, "loss": 0.00085, "grad_norm": 0.00713, "time": 0.61981} +{"mode": "train", "epoch": 1, "iter": 11250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.71022, "loss": 0.00085, "grad_norm": 0.00674, "time": 0.64562} +{"mode": "train", "epoch": 1, "iter": 11300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.72211, "loss": 0.00086, "grad_norm": 0.00788, "time": 0.62079} +{"mode": "train", "epoch": 1, "iter": 11350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68333, "loss": 0.00093, "grad_norm": 0.00727, "time": 0.61843} +{"mode": "train", "epoch": 1, "iter": 11400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.73189, "loss": 0.00087, "grad_norm": 0.0069, "time": 0.63367} +{"mode": "train", "epoch": 1, "iter": 11450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.70261, "loss": 0.0009, "grad_norm": 0.00732, "time": 0.63047} +{"mode": "train", "epoch": 1, "iter": 11500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.7112, "loss": 0.00089, "grad_norm": 0.00716, "time": 0.6188} +{"mode": "train", "epoch": 1, "iter": 11550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69438, "loss": 0.00092, "grad_norm": 0.00714, "time": 0.62591} +{"mode": "train", "epoch": 1, "iter": 11600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.74218, "loss": 0.00083, "grad_norm": 0.00749, "time": 0.62652} +{"mode": "train", "epoch": 1, "iter": 11650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.69632, "loss": 0.00093, "grad_norm": 0.00742, "time": 0.62738} +{"mode": "train", "epoch": 1, "iter": 11700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71498, "loss": 0.0009, "grad_norm": 0.00771, "time": 0.63902} +{"mode": "train", "epoch": 1, "iter": 11750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.67721, "loss": 0.00092, "grad_norm": 0.00812, "time": 0.64151} +{"mode": "train", "epoch": 1, "iter": 11800, "lr": 1e-05, "memory": 17294, "data_time": 0.00027, "heatmap_loss": 0.00093, "acc_pose": 0.69092, "loss": 0.00093, "grad_norm": 0.0072, "time": 0.62553} +{"mode": "train", "epoch": 1, "iter": 11850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71646, "loss": 0.00089, "grad_norm": 0.00678, "time": 0.62471} +{"mode": "train", "epoch": 1, "iter": 11900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.6699, "loss": 0.00096, "grad_norm": 0.00721, "time": 0.62524} +{"mode": "train", "epoch": 1, "iter": 11950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.70404, "loss": 0.00089, "grad_norm": 0.00727, "time": 0.64792} +{"mode": "train", "epoch": 1, "iter": 12000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00087, "acc_pose": 0.69951, "loss": 0.00087, "grad_norm": 0.00653, "time": 0.63877} +{"mode": "train", "epoch": 1, "iter": 12050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.7215, "loss": 0.00088, "grad_norm": 0.00725, "time": 0.62061} +{"mode": "train", "epoch": 1, "iter": 12100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71063, "loss": 0.0009, "grad_norm": 0.00773, "time": 0.64172} +{"mode": "train", "epoch": 1, "iter": 12150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.67493, "loss": 0.00091, "grad_norm": 0.00735, "time": 0.63368} +{"mode": "train", "epoch": 1, "iter": 12200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00083, "acc_pose": 0.71672, "loss": 0.00083, "grad_norm": 0.0062, "time": 0.62514} +{"mode": "train", "epoch": 1, "iter": 12250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67834, "loss": 0.00095, "grad_norm": 0.00745, "time": 0.62324} +{"mode": "train", "epoch": 1, "iter": 12300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.71898, "loss": 0.00092, "grad_norm": 0.00793, "time": 0.65944} +{"mode": "train", "epoch": 1, "iter": 12350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71171, "loss": 0.00091, "grad_norm": 0.00794, "time": 0.6297} +{"mode": "train", "epoch": 1, "iter": 12400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.6752, "loss": 0.00098, "grad_norm": 0.0076, "time": 0.62205} +{"mode": "train", "epoch": 1, "iter": 12450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00085, "acc_pose": 0.74036, "loss": 0.00085, "grad_norm": 0.00739, "time": 0.65188} +{"mode": "train", "epoch": 1, "iter": 12500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.70139, "loss": 0.00095, "grad_norm": 0.00824, "time": 0.63275} +{"mode": "train", "epoch": 1, "iter": 12550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68406, "loss": 0.00096, "grad_norm": 0.00787, "time": 0.62184} +{"mode": "train", "epoch": 1, "iter": 12600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.69978, "loss": 0.00092, "grad_norm": 0.00808, "time": 0.61931} +{"mode": "train", "epoch": 1, "iter": 12650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.72307, "loss": 0.00089, "grad_norm": 0.00697, "time": 0.62026} +{"mode": "train", "epoch": 1, "iter": 12700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.7146, "loss": 0.0009, "grad_norm": 0.00652, "time": 0.62052} +{"mode": "train", "epoch": 1, "iter": 12750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68208, "loss": 0.00093, "grad_norm": 0.00828, "time": 0.65838} +{"mode": "train", "epoch": 1, "iter": 12800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.68541, "loss": 0.00092, "grad_norm": 0.00712, "time": 0.62092} +{"mode": "train", "epoch": 1, "iter": 12850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.68901, "loss": 0.00094, "grad_norm": 0.00742, "time": 0.61782} +{"mode": "train", "epoch": 1, "iter": 12900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.71044, "loss": 0.00094, "grad_norm": 0.00941, "time": 0.64855} +{"mode": "train", "epoch": 1, "iter": 12950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.72041, "loss": 0.00094, "grad_norm": 0.00746, "time": 0.63503} +{"mode": "train", "epoch": 1, "iter": 13000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68879, "loss": 0.00093, "grad_norm": 0.00722, "time": 0.61596} +{"mode": "train", "epoch": 1, "iter": 13050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.7162, "loss": 0.00092, "grad_norm": 0.00735, "time": 0.61427} +{"mode": "train", "epoch": 1, "iter": 13100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.71564, "loss": 0.0009, "grad_norm": 0.00651, "time": 0.61903} +{"mode": "train", "epoch": 1, "iter": 13150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.71046, "loss": 0.00097, "grad_norm": 0.00733, "time": 0.63373} +{"mode": "train", "epoch": 1, "iter": 13200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.67452, "loss": 0.001, "grad_norm": 0.00867, "time": 0.63307} +{"mode": "train", "epoch": 1, "iter": 13250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.69784, "loss": 0.00093, "grad_norm": 0.00866, "time": 0.6294} +{"mode": "train", "epoch": 1, "iter": 13300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.69491, "loss": 0.0009, "grad_norm": 0.00705, "time": 0.61905} +{"mode": "train", "epoch": 1, "iter": 13350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.68955, "loss": 0.00097, "grad_norm": 0.00836, "time": 0.61842} +{"mode": "train", "epoch": 1, "iter": 13400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.68825, "loss": 0.00095, "grad_norm": 0.00769, "time": 0.61952} +{"mode": "train", "epoch": 1, "iter": 13450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.69395, "loss": 0.00094, "grad_norm": 0.00905, "time": 0.63177} +{"mode": "train", "epoch": 1, "iter": 13500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67363, "loss": 0.00097, "grad_norm": 0.00749, "time": 0.62799} +{"mode": "train", "epoch": 1, "iter": 13550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.70127, "loss": 0.00088, "grad_norm": 0.00757, "time": 0.62582} +{"mode": "train", "epoch": 1, "iter": 13600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68953, "loss": 0.00093, "grad_norm": 0.00715, "time": 0.62471} +{"mode": "train", "epoch": 1, "iter": 13650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.69121, "loss": 0.00092, "grad_norm": 0.00736, "time": 0.62418} +{"mode": "train", "epoch": 1, "iter": 13700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71617, "loss": 0.00089, "grad_norm": 0.00705, "time": 0.62472} +{"mode": "train", "epoch": 1, "iter": 13750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.70454, "loss": 0.00098, "grad_norm": 0.00747, "time": 0.62496} +{"mode": "train", "epoch": 1, "iter": 13800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.71134, "loss": 0.0009, "grad_norm": 0.00671, "time": 0.62594} +{"mode": "train", "epoch": 1, "iter": 13850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.67124, "loss": 0.00095, "grad_norm": 0.00749, "time": 0.62671} +{"mode": "train", "epoch": 1, "iter": 13900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.70432, "loss": 0.00088, "grad_norm": 0.00717, "time": 0.62615} +{"mode": "train", "epoch": 1, "iter": 13950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.70253, "loss": 0.00094, "grad_norm": 0.00784, "time": 0.61826} +{"mode": "train", "epoch": 1, "iter": 14000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71847, "loss": 0.0009, "grad_norm": 0.00753, "time": 0.61978} +{"mode": "train", "epoch": 1, "iter": 14050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.70608, "loss": 0.0009, "grad_norm": 0.00634, "time": 0.62259} +{"mode": "train", "epoch": 1, "iter": 14100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71803, "loss": 0.00091, "grad_norm": 0.0068, "time": 0.66804} +{"mode": "train", "epoch": 1, "iter": 14150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68024, "loss": 0.00093, "grad_norm": 0.00805, "time": 0.63079} +{"mode": "train", "epoch": 1, "iter": 14200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.68595, "loss": 0.00089, "grad_norm": 0.00801, "time": 0.61395} +{"mode": "train", "epoch": 1, "iter": 14250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.70099, "loss": 0.00091, "grad_norm": 0.00835, "time": 0.63337} +{"mode": "train", "epoch": 1, "iter": 14300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68818, "loss": 0.00095, "grad_norm": 0.00823, "time": 0.63494} +{"mode": "train", "epoch": 1, "iter": 14350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.65779, "loss": 0.00096, "grad_norm": 0.0081, "time": 0.61647} +{"mode": "train", "epoch": 1, "iter": 14400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67476, "loss": 0.00096, "grad_norm": 0.00839, "time": 0.61359} +{"mode": "train", "epoch": 1, "iter": 14450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.68386, "loss": 0.001, "grad_norm": 0.00766, "time": 0.65601} +{"mode": "train", "epoch": 1, "iter": 14500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.71811, "loss": 0.00094, "grad_norm": 0.00844, "time": 0.6242} +{"mode": "train", "epoch": 1, "iter": 14550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.69259, "loss": 0.00091, "grad_norm": 0.00802, "time": 0.62002} +{"mode": "train", "epoch": 1, "iter": 14600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.70063, "loss": 0.00095, "grad_norm": 0.00783, "time": 0.62178} +{"mode": "train", "epoch": 1, "iter": 14650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.0009, "acc_pose": 0.70968, "loss": 0.0009, "grad_norm": 0.00681, "time": 0.62405} +{"mode": "train", "epoch": 1, "iter": 14700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.70561, "loss": 0.0009, "grad_norm": 0.00796, "time": 0.62557} +{"mode": "train", "epoch": 1, "iter": 14750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68343, "loss": 0.00096, "grad_norm": 0.00777, "time": 0.66253} +{"mode": "train", "epoch": 1, "iter": 14800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.71222, "loss": 0.00089, "grad_norm": 0.00718, "time": 0.63645} +{"mode": "train", "epoch": 1, "iter": 14850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69968, "loss": 0.00094, "grad_norm": 0.00857, "time": 0.61814} +{"mode": "train", "epoch": 1, "iter": 14900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70302, "loss": 0.0009, "grad_norm": 0.00736, "time": 0.64976} +{"mode": "train", "epoch": 1, "iter": 14950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.68602, "loss": 0.00095, "grad_norm": 0.00722, "time": 0.61766} +{"mode": "train", "epoch": 1, "iter": 15000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70477, "loss": 0.00093, "grad_norm": 0.00776, "time": 0.61125} +{"mode": "train", "epoch": 1, "iter": 15050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71189, "loss": 0.0009, "grad_norm": 0.00711, "time": 0.66194} +{"mode": "train", "epoch": 1, "iter": 15100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.6761, "loss": 0.00092, "grad_norm": 0.00734, "time": 0.62515} +{"mode": "train", "epoch": 1, "iter": 15150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00084, "acc_pose": 0.71884, "loss": 0.00084, "grad_norm": 0.00691, "time": 0.62145} +{"mode": "train", "epoch": 1, "iter": 15200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68122, "loss": 0.00094, "grad_norm": 0.00834, "time": 0.62034} +{"mode": "train", "epoch": 1, "iter": 15250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.70352, "loss": 0.0009, "grad_norm": 0.00686, "time": 0.65974} +{"mode": "train", "epoch": 1, "iter": 15300, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.69307, "loss": 0.00094, "grad_norm": 0.00898, "time": 0.65675} +{"mode": "train", "epoch": 1, "iter": 15350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65212, "loss": 0.001, "grad_norm": 0.00735, "time": 0.61884} +{"mode": "train", "epoch": 1, "iter": 15400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00081, "acc_pose": 0.69975, "loss": 0.00081, "grad_norm": 0.00729, "time": 0.61454} +{"mode": "train", "epoch": 1, "iter": 15450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.69265, "loss": 0.00091, "grad_norm": 0.00694, "time": 0.63069} +{"mode": "train", "epoch": 1, "iter": 15500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00084, "acc_pose": 0.71952, "loss": 0.00084, "grad_norm": 0.00629, "time": 0.63454} +{"mode": "train", "epoch": 1, "iter": 15550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.67606, "loss": 0.00091, "grad_norm": 0.00704, "time": 0.63435} +{"mode": "train", "epoch": 1, "iter": 15600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71162, "loss": 0.00091, "grad_norm": 0.00836, "time": 0.62707} +{"mode": "train", "epoch": 1, "iter": 15650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.7057, "loss": 0.0009, "grad_norm": 0.00735, "time": 0.66442} +{"mode": "train", "epoch": 1, "iter": 15700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.71873, "loss": 0.00092, "grad_norm": 0.0075, "time": 0.61241} +{"mode": "train", "epoch": 1, "iter": 15750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.6757, "loss": 0.00095, "grad_norm": 0.00779, "time": 0.63581} +{"mode": "train", "epoch": 1, "iter": 15800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.70888, "loss": 0.00089, "grad_norm": 0.00756, "time": 0.65564} +{"mode": "train", "epoch": 1, "iter": 15850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.67273, "loss": 0.00095, "grad_norm": 0.00775, "time": 0.62046} +{"mode": "train", "epoch": 1, "iter": 15900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.66828, "loss": 0.00096, "grad_norm": 0.00776, "time": 0.61732} +{"mode": "train", "epoch": 1, "iter": 15950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.70888, "loss": 0.00092, "grad_norm": 0.00789, "time": 0.62558} +{"mode": "train", "epoch": 1, "iter": 16000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.671, "loss": 0.00095, "grad_norm": 0.00683, "time": 0.63537} +{"mode": "train", "epoch": 1, "iter": 16050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.71676, "loss": 0.00088, "grad_norm": 0.00718, "time": 0.63446} +{"mode": "train", "epoch": 1, "iter": 16100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.69024, "loss": 0.00098, "grad_norm": 0.00792, "time": 0.63263} +{"mode": "train", "epoch": 1, "iter": 16150, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00092, "acc_pose": 0.6937, "loss": 0.00092, "grad_norm": 0.00799, "time": 0.61537} +{"mode": "train", "epoch": 1, "iter": 16200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71551, "loss": 0.0009, "grad_norm": 0.00686, "time": 0.62611} +{"mode": "train", "epoch": 1, "iter": 16250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.71226, "loss": 0.00093, "grad_norm": 0.00732, "time": 0.64124} +{"mode": "train", "epoch": 1, "iter": 16300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.67537, "loss": 0.00092, "grad_norm": 0.00887, "time": 0.63128} +{"mode": "train", "epoch": 1, "iter": 16350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.70359, "loss": 0.00095, "grad_norm": 0.00793, "time": 0.62373} +{"mode": "train", "epoch": 1, "iter": 16400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68249, "loss": 0.00094, "grad_norm": 0.00687, "time": 0.62458} +{"mode": "train", "epoch": 1, "iter": 16450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.71718, "loss": 0.00088, "grad_norm": 0.00737, "time": 0.67447} +{"mode": "train", "epoch": 1, "iter": 16500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68346, "loss": 0.00092, "grad_norm": 0.00723, "time": 0.62832} +{"mode": "train", "epoch": 1, "iter": 16550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.7315, "loss": 0.00091, "grad_norm": 0.00641, "time": 0.62925} +{"mode": "train", "epoch": 1, "iter": 16600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.6805, "loss": 0.00088, "grad_norm": 0.00698, "time": 0.6291} +{"mode": "train", "epoch": 1, "iter": 16650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.7136, "loss": 0.00088, "grad_norm": 0.0059, "time": 0.6288} +{"mode": "train", "epoch": 1, "iter": 16700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.69564, "loss": 0.00091, "grad_norm": 0.00685, "time": 0.66227} +{"mode": "train", "epoch": 1, "iter": 16750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.69731, "loss": 0.00091, "grad_norm": 0.00679, "time": 0.63138} +{"mode": "train", "epoch": 1, "iter": 16800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.72009, "loss": 0.00086, "grad_norm": 0.00639, "time": 0.62004} +{"mode": "train", "epoch": 1, "iter": 16850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.68296, "loss": 0.00091, "grad_norm": 0.00674, "time": 0.62063} +{"mode": "train", "epoch": 1, "iter": 16900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68956, "loss": 0.00097, "grad_norm": 0.00939, "time": 0.62058} +{"mode": "train", "epoch": 1, "iter": 16950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.69865, "loss": 0.00096, "grad_norm": 0.0082, "time": 0.66845} +{"mode": "train", "epoch": 1, "iter": 17000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68496, "loss": 0.00096, "grad_norm": 0.00823, "time": 0.60951} +{"mode": "train", "epoch": 1, "iter": 17050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.69756, "loss": 0.00092, "grad_norm": 0.00757, "time": 0.65681} +{"mode": "train", "epoch": 1, "iter": 17100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.68031, "loss": 0.00088, "grad_norm": 0.00699, "time": 0.62754} +{"mode": "train", "epoch": 1, "iter": 17150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.687, "loss": 0.00092, "grad_norm": 0.0069, "time": 0.62564} +{"mode": "train", "epoch": 1, "iter": 17200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.68975, "loss": 0.00091, "grad_norm": 0.00727, "time": 0.62596} +{"mode": "train", "epoch": 1, "iter": 17250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70733, "loss": 0.0009, "grad_norm": 0.00635, "time": 0.62575} +{"mode": "train", "epoch": 1, "iter": 17300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.69315, "loss": 0.00092, "grad_norm": 0.00685, "time": 0.62565} +{"mode": "train", "epoch": 1, "iter": 17350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.67886, "loss": 0.00094, "grad_norm": 0.00809, "time": 0.62691} +{"mode": "train", "epoch": 1, "iter": 17400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68507, "loss": 0.00093, "grad_norm": 0.00679, "time": 0.6263} +{"mode": "train", "epoch": 1, "iter": 17450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71575, "loss": 0.0009, "grad_norm": 0.00775, "time": 0.62114} +{"mode": "train", "epoch": 1, "iter": 17500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.69946, "loss": 0.0009, "grad_norm": 0.0073, "time": 0.62217} +{"mode": "train", "epoch": 1, "iter": 17550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00085, "acc_pose": 0.70594, "loss": 0.00085, "grad_norm": 0.00593, "time": 0.629} +{"mode": "train", "epoch": 1, "iter": 17600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71105, "loss": 0.00091, "grad_norm": 0.00842, "time": 0.6285} +{"mode": "train", "epoch": 1, "iter": 17650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.68103, "loss": 0.00099, "grad_norm": 0.00854, "time": 0.62884} +{"mode": "train", "epoch": 1, "iter": 17700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69305, "loss": 0.00092, "grad_norm": 0.00824, "time": 0.6283} +{"mode": "train", "epoch": 1, "iter": 17750, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.69149, "loss": 0.00094, "grad_norm": 0.00863, "time": 0.63151} +{"mode": "train", "epoch": 1, "iter": 17800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.70352, "loss": 0.00089, "grad_norm": 0.00675, "time": 0.62097} +{"mode": "train", "epoch": 1, "iter": 17850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69163, "loss": 0.00094, "grad_norm": 0.00654, "time": 0.61937} +{"mode": "train", "epoch": 1, "iter": 17900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.69587, "loss": 0.00091, "grad_norm": 0.0073, "time": 0.62579} +{"mode": "train", "epoch": 1, "iter": 17950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.69515, "loss": 0.00088, "grad_norm": 0.00588, "time": 0.6564} +{"mode": "train", "epoch": 1, "iter": 18000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.70264, "loss": 0.00094, "grad_norm": 0.00792, "time": 0.63981} +{"mode": "train", "epoch": 1, "iter": 18050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68915, "loss": 0.00092, "grad_norm": 0.00693, "time": 0.61111} +{"mode": "train", "epoch": 1, "iter": 18100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.6904, "loss": 0.00096, "grad_norm": 0.00708, "time": 0.67097} +{"mode": "train", "epoch": 1, "iter": 18150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.68222, "loss": 0.001, "grad_norm": 0.00698, "time": 0.61985} +{"mode": "train", "epoch": 1, "iter": 18200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69747, "loss": 0.00092, "grad_norm": 0.00701, "time": 0.63457} +{"mode": "train", "epoch": 1, "iter": 18250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.7042, "loss": 0.00094, "grad_norm": 0.00695, "time": 0.63389} +{"mode": "train", "epoch": 1, "iter": 18300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.69287, "loss": 0.00091, "grad_norm": 0.00735, "time": 0.62713} +{"mode": "train", "epoch": 1, "iter": 18350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.68473, "loss": 0.00092, "grad_norm": 0.00619, "time": 0.62222} +{"mode": "train", "epoch": 1, "iter": 18400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.66729, "loss": 0.00096, "grad_norm": 0.00823, "time": 0.64819} +{"mode": "train", "epoch": 1, "iter": 18450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.69792, "loss": 0.0009, "grad_norm": 0.00685, "time": 0.63232} +{"mode": "train", "epoch": 1, "iter": 18500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.70053, "loss": 0.00091, "grad_norm": 0.00686, "time": 0.61524} +{"mode": "train", "epoch": 1, "iter": 18550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.70241, "loss": 0.00098, "grad_norm": 0.00759, "time": 0.62347} +{"mode": "train", "epoch": 1, "iter": 18600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68897, "loss": 0.00096, "grad_norm": 0.00651, "time": 0.63462} +{"mode": "train", "epoch": 1, "iter": 18650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68229, "loss": 0.00096, "grad_norm": 0.00756, "time": 0.62938} +{"mode": "train", "epoch": 1, "iter": 18700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.72253, "loss": 0.00091, "grad_norm": 0.00868, "time": 0.62997} +{"mode": "train", "epoch": 1, "iter": 18750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66389, "loss": 0.00098, "grad_norm": 0.00779, "time": 0.62953} +{"mode": "train", "epoch": 1, "iter": 18800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67389, "loss": 0.00097, "grad_norm": 0.00703, "time": 0.63022} +{"mode": "train", "epoch": 1, "iter": 18850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.66687, "loss": 0.00092, "grad_norm": 0.00691, "time": 0.62978} +{"mode": "train", "epoch": 1, "iter": 18900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.68872, "loss": 0.00095, "grad_norm": 0.00706, "time": 0.62864} +{"mode": "train", "epoch": 1, "iter": 18950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.68928, "loss": 0.00099, "grad_norm": 0.0081, "time": 0.62842} +{"mode": "train", "epoch": 1, "iter": 19000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.7042, "loss": 0.00097, "grad_norm": 0.00711, "time": 0.63034} +{"mode": "train", "epoch": 1, "iter": 19050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.70755, "loss": 0.00093, "grad_norm": 0.00787, "time": 0.63322} +{"mode": "train", "epoch": 1, "iter": 19100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69077, "loss": 0.00094, "grad_norm": 0.00757, "time": 0.62924} +{"mode": "train", "epoch": 1, "iter": 19150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67874, "loss": 0.00095, "grad_norm": 0.00699, "time": 0.62347} +{"mode": "train", "epoch": 1, "iter": 19200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71028, "loss": 0.00091, "grad_norm": 0.00703, "time": 0.62287} +{"mode": "train", "epoch": 1, "iter": 19250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.69671, "loss": 0.00092, "grad_norm": 0.00724, "time": 0.6238} +{"mode": "train", "epoch": 1, "iter": 19300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.7, "loss": 0.00092, "grad_norm": 0.00701, "time": 0.64347} +{"mode": "train", "epoch": 1, "iter": 19350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68878, "loss": 0.00095, "grad_norm": 0.00924, "time": 0.64802} +{"mode": "train", "epoch": 1, "iter": 19400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68473, "loss": 0.00096, "grad_norm": 0.00725, "time": 0.62698} +{"mode": "train", "epoch": 1, "iter": 19450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67913, "loss": 0.00096, "grad_norm": 0.00773, "time": 0.6193} +{"mode": "train", "epoch": 1, "iter": 19500, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.70987, "loss": 0.00094, "grad_norm": 0.00794, "time": 0.61892} +{"mode": "train", "epoch": 1, "iter": 19550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68227, "loss": 0.00096, "grad_norm": 0.00769, "time": 0.66698} +{"mode": "train", "epoch": 1, "iter": 19600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67196, "loss": 0.00096, "grad_norm": 0.0071, "time": 0.62387} +{"mode": "train", "epoch": 1, "iter": 19650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.69449, "loss": 0.00093, "grad_norm": 0.00662, "time": 0.61698} +{"mode": "train", "epoch": 1, "iter": 19700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.70198, "loss": 0.00089, "grad_norm": 0.00786, "time": 0.64356} +{"mode": "train", "epoch": 1, "iter": 19750, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.68519, "loss": 0.00095, "grad_norm": 0.00705, "time": 0.64032} +{"mode": "train", "epoch": 1, "iter": 19800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.69576, "loss": 0.00091, "grad_norm": 0.0066, "time": 0.62592} +{"mode": "train", "epoch": 1, "iter": 19850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.70417, "loss": 0.0009, "grad_norm": 0.0065, "time": 0.61722} +{"mode": "train", "epoch": 1, "iter": 19900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.70549, "loss": 0.00096, "grad_norm": 0.00728, "time": 0.65913} +{"mode": "train", "epoch": 1, "iter": 19950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.67786, "loss": 0.00093, "grad_norm": 0.00773, "time": 0.61924} +{"mode": "train", "epoch": 1, "iter": 20000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68921, "loss": 0.00096, "grad_norm": 0.00675, "time": 0.61534} +{"mode": "train", "epoch": 1, "iter": 20050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.6938, "loss": 0.00091, "grad_norm": 0.00684, "time": 0.63004} +{"mode": "train", "epoch": 1, "iter": 20100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67711, "loss": 0.00097, "grad_norm": 0.00785, "time": 0.639} +{"mode": "train", "epoch": 1, "iter": 20150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.69232, "loss": 0.00096, "grad_norm": 0.0079, "time": 0.62995} +{"mode": "train", "epoch": 1, "iter": 20200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68097, "loss": 0.00093, "grad_norm": 0.00752, "time": 0.62975} +{"mode": "train", "epoch": 1, "iter": 20250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.70558, "loss": 0.00092, "grad_norm": 0.00669, "time": 0.62927} +{"mode": "train", "epoch": 1, "iter": 20300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.70113, "loss": 0.00094, "grad_norm": 0.00761, "time": 0.62448} +{"mode": "train", "epoch": 1, "iter": 20350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.66096, "loss": 0.00097, "grad_norm": 0.00806, "time": 0.62502} +{"mode": "train", "epoch": 1, "iter": 20400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68351, "loss": 0.00097, "grad_norm": 0.00715, "time": 0.62579} +{"mode": "train", "epoch": 1, "iter": 20450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68673, "loss": 0.00093, "grad_norm": 0.00632, "time": 0.63986} +{"mode": "train", "epoch": 1, "iter": 20500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68809, "loss": 0.00094, "grad_norm": 0.00627, "time": 0.64058} +{"mode": "train", "epoch": 1, "iter": 20550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.65697, "loss": 0.00097, "grad_norm": 0.00723, "time": 0.63566} +{"mode": "train", "epoch": 1, "iter": 20600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00087, "acc_pose": 0.69108, "loss": 0.00087, "grad_norm": 0.00693, "time": 0.63269} +{"mode": "train", "epoch": 1, "iter": 20650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.6611, "loss": 0.00094, "grad_norm": 0.00688, "time": 0.63351} +{"mode": "train", "epoch": 1, "iter": 20700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.6974, "loss": 0.00091, "grad_norm": 0.00804, "time": 0.6335} +{"mode": "train", "epoch": 1, "iter": 20750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68265, "loss": 0.00094, "grad_norm": 0.00713, "time": 0.63384} +{"mode": "train", "epoch": 1, "iter": 20800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.63804, "loss": 0.00101, "grad_norm": 0.00885, "time": 0.63361} +{"mode": "train", "epoch": 1, "iter": 20850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70787, "loss": 0.00093, "grad_norm": 0.00731, "time": 0.63334} +{"mode": "train", "epoch": 1, "iter": 20900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66919, "loss": 0.00097, "grad_norm": 0.00715, "time": 0.63177} +{"mode": "train", "epoch": 1, "iter": 20950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.64104, "loss": 0.00098, "grad_norm": 0.00644, "time": 0.62597} +{"mode": "train", "epoch": 1, "iter": 21000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00087, "acc_pose": 0.71933, "loss": 0.00087, "grad_norm": 0.00743, "time": 0.66176} +{"mode": "train", "epoch": 1, "iter": 21050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.69361, "loss": 0.0009, "grad_norm": 0.00677, "time": 0.63082} +{"mode": "train", "epoch": 1, "iter": 21100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.70457, "loss": 0.00094, "grad_norm": 0.00688, "time": 0.61696} +{"mode": "train", "epoch": 1, "iter": 21150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.68975, "loss": 0.00094, "grad_norm": 0.00642, "time": 0.62368} +{"mode": "train", "epoch": 1, "iter": 21200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.6893, "loss": 0.00097, "grad_norm": 0.00776, "time": 0.68288} +{"mode": "train", "epoch": 1, "iter": 21250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.67357, "loss": 0.00098, "grad_norm": 0.00789, "time": 0.62851} +{"mode": "train", "epoch": 1, "iter": 21300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66793, "loss": 0.001, "grad_norm": 0.00716, "time": 0.61537} +{"mode": "train", "epoch": 1, "iter": 21350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.73263, "loss": 0.00085, "grad_norm": 0.00624, "time": 0.66398} +{"mode": "train", "epoch": 1, "iter": 21400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.68676, "loss": 0.00088, "grad_norm": 0.00694, "time": 0.62262} +{"mode": "train", "epoch": 1, "iter": 21450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00091, "acc_pose": 0.65601, "loss": 0.00091, "grad_norm": 0.00626, "time": 0.6224} +{"mode": "train", "epoch": 1, "iter": 21500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00085, "acc_pose": 0.71836, "loss": 0.00085, "grad_norm": 0.00581, "time": 0.62057} +{"mode": "train", "epoch": 1, "iter": 21550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68281, "loss": 0.00094, "grad_norm": 0.00683, "time": 0.68225} +{"mode": "train", "epoch": 1, "iter": 21600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.69298, "loss": 0.00098, "grad_norm": 0.00735, "time": 0.62865} +{"mode": "train", "epoch": 1, "iter": 21650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69008, "loss": 0.00092, "grad_norm": 0.00689, "time": 0.62088} +{"mode": "train", "epoch": 1, "iter": 21700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.68304, "loss": 0.00091, "grad_norm": 0.00744, "time": 0.66082} +{"mode": "train", "epoch": 1, "iter": 21750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.68821, "loss": 0.00091, "grad_norm": 0.00635, "time": 0.6307} +{"mode": "train", "epoch": 1, "iter": 21800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.70012, "loss": 0.00093, "grad_norm": 0.00695, "time": 0.61721} +{"mode": "train", "epoch": 1, "iter": 21850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.6946, "loss": 0.00091, "grad_norm": 0.00817, "time": 0.65587} +{"mode": "train", "epoch": 1, "iter": 21900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.68961, "loss": 0.00098, "grad_norm": 0.00781, "time": 0.64234} +{"mode": "train", "epoch": 1, "iter": 21950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67487, "loss": 0.00097, "grad_norm": 0.00788, "time": 0.62646} +{"mode": "train", "epoch": 1, "iter": 22000, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00092, "acc_pose": 0.67081, "loss": 0.00092, "grad_norm": 0.00675, "time": 0.62134} +{"mode": "train", "epoch": 1, "iter": 22050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69216, "loss": 0.00095, "grad_norm": 0.00658, "time": 0.63814} +{"mode": "train", "epoch": 1, "iter": 22100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.68187, "loss": 0.00097, "grad_norm": 0.0067, "time": 0.63091} +{"mode": "train", "epoch": 1, "iter": 22150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66141, "loss": 0.00097, "grad_norm": 0.00745, "time": 0.62644} +{"mode": "train", "epoch": 1, "iter": 22200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.69963, "loss": 0.00093, "grad_norm": 0.00757, "time": 0.6314} +{"mode": "train", "epoch": 1, "iter": 22250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.69566, "loss": 0.00088, "grad_norm": 0.00723, "time": 0.63011} +{"mode": "train", "epoch": 1, "iter": 22300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00088, "acc_pose": 0.71986, "loss": 0.00088, "grad_norm": 0.00673, "time": 0.63072} +{"mode": "train", "epoch": 1, "iter": 22350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68945, "loss": 0.00095, "grad_norm": 0.0073, "time": 0.63129} +{"mode": "train", "epoch": 1, "iter": 22400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.6862, "loss": 0.00093, "grad_norm": 0.00883, "time": 0.62986} +{"mode": "train", "epoch": 1, "iter": 22450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.64811, "loss": 0.00097, "grad_norm": 0.00671, "time": 0.63146} +{"mode": "train", "epoch": 1, "iter": 22500, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00097, "acc_pose": 0.67348, "loss": 0.00097, "grad_norm": 0.00747, "time": 0.62949} +{"mode": "train", "epoch": 1, "iter": 22550, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00089, "acc_pose": 0.71371, "loss": 0.00089, "grad_norm": 0.00694, "time": 0.62402} +{"mode": "train", "epoch": 1, "iter": 22600, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.70041, "loss": 0.00093, "grad_norm": 0.00679, "time": 0.67201} +{"mode": "train", "epoch": 1, "iter": 22650, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00097, "acc_pose": 0.65939, "loss": 0.00097, "grad_norm": 0.00703, "time": 0.63869} +{"mode": "train", "epoch": 1, "iter": 22700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.67533, "loss": 0.00094, "grad_norm": 0.0073, "time": 0.62665} +{"mode": "train", "epoch": 1, "iter": 22750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.69766, "loss": 0.00091, "grad_norm": 0.00573, "time": 0.62176} +{"mode": "train", "epoch": 1, "iter": 22800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68608, "loss": 0.00096, "grad_norm": 0.00737, "time": 0.66026} +{"mode": "train", "epoch": 1, "iter": 22850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.67278, "loss": 0.00089, "grad_norm": 0.00607, "time": 0.63243} +{"mode": "train", "epoch": 1, "iter": 22900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68794, "loss": 0.00094, "grad_norm": 0.00872, "time": 0.62515} +{"mode": "train", "epoch": 1, "iter": 22950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69139, "loss": 0.00094, "grad_norm": 0.0074, "time": 0.62549} +{"mode": "train", "epoch": 1, "iter": 23000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66548, "loss": 0.00101, "grad_norm": 0.00773, "time": 0.62556} +{"mode": "train", "epoch": 1, "iter": 23050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68811, "loss": 0.00092, "grad_norm": 0.00646, "time": 0.65666} +{"mode": "train", "epoch": 1, "iter": 23100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.64284, "loss": 0.00103, "grad_norm": 0.00731, "time": 0.64577} +{"mode": "train", "epoch": 1, "iter": 23150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.66848, "loss": 0.00096, "grad_norm": 0.00662, "time": 0.63488} +{"mode": "train", "epoch": 1, "iter": 23200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.6815, "loss": 0.00096, "grad_norm": 0.00779, "time": 0.61834} +{"mode": "train", "epoch": 1, "iter": 23250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.71029, "loss": 0.00088, "grad_norm": 0.00681, "time": 0.62722} +{"mode": "train", "epoch": 1, "iter": 23300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.65665, "loss": 0.00097, "grad_norm": 0.00784, "time": 0.63301} +{"mode": "train", "epoch": 1, "iter": 23350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.6741, "loss": 0.00102, "grad_norm": 0.00878, "time": 0.62964} +{"mode": "train", "epoch": 1, "iter": 23400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67378, "loss": 0.00097, "grad_norm": 0.00691, "time": 0.63036} +{"mode": "train", "epoch": 1, "iter": 23450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.68215, "loss": 0.00092, "grad_norm": 0.00712, "time": 0.62904} +{"mode": "train", "epoch": 1, "iter": 23500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.68899, "loss": 0.00098, "grad_norm": 0.00829, "time": 0.63098} +{"mode": "train", "epoch": 1, "iter": 23550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68575, "loss": 0.00096, "grad_norm": 0.00803, "time": 0.62878} +{"mode": "train", "epoch": 1, "iter": 23600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.0009, "acc_pose": 0.71743, "loss": 0.0009, "grad_norm": 0.00755, "time": 0.62935} +{"mode": "train", "epoch": 1, "iter": 23650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67393, "loss": 0.00096, "grad_norm": 0.00689, "time": 0.62937} +{"mode": "train", "epoch": 1, "iter": 23700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00086, "acc_pose": 0.698, "loss": 0.00086, "grad_norm": 0.00681, "time": 0.62937} +{"mode": "train", "epoch": 1, "iter": 23750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6792, "loss": 0.00099, "grad_norm": 0.00876, "time": 0.62424} +{"mode": "train", "epoch": 1, "iter": 23800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.70107, "loss": 0.00094, "grad_norm": 0.00712, "time": 0.62391} +{"mode": "train", "epoch": 1, "iter": 23850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68769, "loss": 0.00099, "grad_norm": 0.00716, "time": 0.67028} +{"mode": "train", "epoch": 1, "iter": 23900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.70627, "loss": 0.00095, "grad_norm": 0.00703, "time": 0.62188} +{"mode": "train", "epoch": 1, "iter": 23950, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.69107, "loss": 0.00093, "grad_norm": 0.00743, "time": 0.62301} +{"mode": "train", "epoch": 1, "iter": 24000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69026, "loss": 0.00095, "grad_norm": 0.00672, "time": 0.63024} +{"mode": "train", "epoch": 1, "iter": 24050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.69092, "loss": 0.00089, "grad_norm": 0.00715, "time": 0.6309} +{"mode": "train", "epoch": 1, "iter": 24100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67921, "loss": 0.00099, "grad_norm": 0.00818, "time": 0.63012} +{"mode": "train", "epoch": 1, "iter": 24150, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00095, "acc_pose": 0.66559, "loss": 0.00095, "grad_norm": 0.00713, "time": 0.63263} +{"mode": "train", "epoch": 1, "iter": 24200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00089, "acc_pose": 0.70012, "loss": 0.00089, "grad_norm": 0.00688, "time": 0.63111} +{"mode": "train", "epoch": 1, "iter": 24250, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.6824, "loss": 0.00095, "grad_norm": 0.00807, "time": 0.63245} +{"mode": "train", "epoch": 1, "iter": 24300, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00096, "acc_pose": 0.67677, "loss": 0.00096, "grad_norm": 0.00802, "time": 0.63373} +{"mode": "train", "epoch": 1, "iter": 24350, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00091, "acc_pose": 0.71297, "loss": 0.00091, "grad_norm": 0.00731, "time": 0.63379} +{"mode": "train", "epoch": 1, "iter": 24400, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.68106, "loss": 0.00097, "grad_norm": 0.00739, "time": 0.62672} +{"mode": "train", "epoch": 1, "iter": 24450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.68506, "loss": 0.00094, "grad_norm": 0.00792, "time": 0.62656} +{"mode": "train", "epoch": 1, "iter": 24500, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00101, "acc_pose": 0.65764, "loss": 0.00101, "grad_norm": 0.00772, "time": 0.62753} +{"mode": "train", "epoch": 1, "iter": 24550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69964, "loss": 0.00092, "grad_norm": 0.00776, "time": 0.64172} +{"mode": "train", "epoch": 1, "iter": 24600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.69684, "loss": 0.0009, "grad_norm": 0.00647, "time": 0.63837} +{"mode": "train", "epoch": 1, "iter": 24650, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00094, "acc_pose": 0.70066, "loss": 0.00094, "grad_norm": 0.0096, "time": 0.62982} +{"mode": "train", "epoch": 1, "iter": 24700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.70518, "loss": 0.00092, "grad_norm": 0.00628, "time": 0.6192} +{"mode": "train", "epoch": 1, "iter": 24750, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.001, "acc_pose": 0.68054, "loss": 0.001, "grad_norm": 0.00785, "time": 0.64894} +{"mode": "train", "epoch": 1, "iter": 24800, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00102, "acc_pose": 0.6572, "loss": 0.00102, "grad_norm": 0.00699, "time": 0.64465} +{"mode": "train", "epoch": 1, "iter": 24850, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.0009, "acc_pose": 0.7054, "loss": 0.0009, "grad_norm": 0.0075, "time": 0.62162} +{"mode": "train", "epoch": 1, "iter": 24900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66903, "loss": 0.00095, "grad_norm": 0.00757, "time": 0.65044} +{"mode": "train", "epoch": 1, "iter": 24950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.69142, "loss": 0.00097, "grad_norm": 0.00761, "time": 0.63036} +{"mode": "val", "epoch": 1, "iter": 17355, "lr": 1e-05, "AP": 0.64044, "AP .5": 0.86754, "AP .75": 0.71505, "AP (M)": 0.6081, "AP (L)": 0.70195, "AR": 0.70099, "AR .5": 0.91026, "AR .75": 0.77078, "AR (M)": 0.65875, "AR (L)": 0.76083} +{"mode": "train", "epoch": 2, "iter": 50, "lr": 1e-05, "memory": 17294, "data_time": 0.05589, "heatmap_loss": 0.0009, "acc_pose": 0.69889, "loss": 0.0009, "grad_norm": 0.00776, "time": 0.64624} +{"mode": "train", "epoch": 2, "iter": 100, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.0009, "acc_pose": 0.67268, "loss": 0.0009, "grad_norm": 0.00707, "time": 0.59393} +{"mode": "train", "epoch": 2, "iter": 150, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00091, "acc_pose": 0.71328, "loss": 0.00091, "grad_norm": 0.00712, "time": 0.59971} +{"mode": "train", "epoch": 2, "iter": 200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.68241, "loss": 0.00094, "grad_norm": 0.00668, "time": 0.63093} +{"mode": "train", "epoch": 2, "iter": 250, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.68722, "loss": 0.00096, "grad_norm": 0.00719, "time": 0.69079} +{"mode": "train", "epoch": 2, "iter": 300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68539, "loss": 0.00096, "grad_norm": 0.00767, "time": 0.64945} +{"mode": "train", "epoch": 2, "iter": 350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.73789, "loss": 0.00088, "grad_norm": 0.00682, "time": 0.62693} +{"mode": "train", "epoch": 2, "iter": 400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.66599, "loss": 0.00096, "grad_norm": 0.00658, "time": 0.62585} +{"mode": "train", "epoch": 2, "iter": 450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.70592, "loss": 0.0009, "grad_norm": 0.00637, "time": 0.67187} +{"mode": "train", "epoch": 2, "iter": 500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.66622, "loss": 0.00095, "grad_norm": 0.00601, "time": 0.62783} +{"mode": "train", "epoch": 2, "iter": 550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.7054, "loss": 0.0009, "grad_norm": 0.00698, "time": 0.62742} +{"mode": "train", "epoch": 2, "iter": 600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69157, "loss": 0.00094, "grad_norm": 0.00756, "time": 0.62709} +{"mode": "train", "epoch": 2, "iter": 650, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00091, "acc_pose": 0.70966, "loss": 0.00091, "grad_norm": 0.00686, "time": 0.67931} +{"mode": "train", "epoch": 2, "iter": 700, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00091, "acc_pose": 0.69948, "loss": 0.00091, "grad_norm": 0.00668, "time": 0.63784} +{"mode": "train", "epoch": 2, "iter": 750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.70387, "loss": 0.00089, "grad_norm": 0.00705, "time": 0.63405} +{"mode": "train", "epoch": 2, "iter": 800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.68907, "loss": 0.00098, "grad_norm": 0.00775, "time": 0.63407} +{"mode": "train", "epoch": 2, "iter": 850, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.6947, "loss": 0.00094, "grad_norm": 0.00732, "time": 0.63422} +{"mode": "train", "epoch": 2, "iter": 900, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.70235, "loss": 0.00093, "grad_norm": 0.00657, "time": 0.63954} +{"mode": "train", "epoch": 2, "iter": 950, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.70405, "loss": 0.00094, "grad_norm": 0.00695, "time": 0.63936} +{"mode": "train", "epoch": 2, "iter": 1000, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.70493, "loss": 0.00094, "grad_norm": 0.00668, "time": 0.63516} +{"mode": "train", "epoch": 2, "iter": 1050, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00086, "acc_pose": 0.71752, "loss": 0.00086, "grad_norm": 0.00627, "time": 0.62447} +{"mode": "train", "epoch": 2, "iter": 1100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00091, "acc_pose": 0.70408, "loss": 0.00091, "grad_norm": 0.00704, "time": 0.67327} +{"mode": "train", "epoch": 2, "iter": 1150, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00098, "acc_pose": 0.6619, "loss": 0.00098, "grad_norm": 0.00699, "time": 0.62513} +{"mode": "train", "epoch": 2, "iter": 1200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00087, "acc_pose": 0.72372, "loss": 0.00087, "grad_norm": 0.00697, "time": 0.62467} +{"mode": "train", "epoch": 2, "iter": 1250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.66131, "loss": 0.00092, "grad_norm": 0.00692, "time": 0.68064} +{"mode": "train", "epoch": 2, "iter": 1300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66395, "loss": 0.00095, "grad_norm": 0.00765, "time": 0.63088} +{"mode": "train", "epoch": 2, "iter": 1350, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00098, "acc_pose": 0.67872, "loss": 0.00098, "grad_norm": 0.00728, "time": 0.62211} +{"mode": "train", "epoch": 2, "iter": 1400, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.65586, "loss": 0.00095, "grad_norm": 0.00672, "time": 0.64439} +{"mode": "train", "epoch": 2, "iter": 1450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.7053, "loss": 0.00091, "grad_norm": 0.00681, "time": 0.64069} +{"mode": "train", "epoch": 2, "iter": 1500, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00092, "acc_pose": 0.69613, "loss": 0.00092, "grad_norm": 0.00685, "time": 0.63809} +{"mode": "train", "epoch": 2, "iter": 1550, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.65346, "loss": 0.00103, "grad_norm": 0.00748, "time": 0.63261} +{"mode": "train", "epoch": 2, "iter": 1600, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00101, "acc_pose": 0.67114, "loss": 0.00101, "grad_norm": 0.00727, "time": 0.63205} +{"mode": "train", "epoch": 2, "iter": 1650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.70353, "loss": 0.00094, "grad_norm": 0.00694, "time": 0.63389} +{"mode": "train", "epoch": 2, "iter": 1700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67952, "loss": 0.00098, "grad_norm": 0.00723, "time": 0.62963} +{"mode": "train", "epoch": 2, "iter": 1750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.69041, "loss": 0.00098, "grad_norm": 0.00786, "time": 0.63051} +{"mode": "train", "epoch": 2, "iter": 1800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68234, "loss": 0.00092, "grad_norm": 0.00678, "time": 0.63221} +{"mode": "train", "epoch": 2, "iter": 1850, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.69981, "loss": 0.00094, "grad_norm": 0.00717, "time": 0.65422} +{"mode": "train", "epoch": 2, "iter": 1900, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00091, "acc_pose": 0.69287, "loss": 0.00091, "grad_norm": 0.00614, "time": 0.64342} +{"mode": "train", "epoch": 2, "iter": 1950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67713, "loss": 0.00095, "grad_norm": 0.00733, "time": 0.63025} +{"mode": "train", "epoch": 2, "iter": 2000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67395, "loss": 0.00097, "grad_norm": 0.0081, "time": 0.62443} +{"mode": "train", "epoch": 2, "iter": 2050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.66543, "loss": 0.00097, "grad_norm": 0.00857, "time": 0.62962} +{"mode": "train", "epoch": 2, "iter": 2100, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00097, "acc_pose": 0.67382, "loss": 0.00097, "grad_norm": 0.00749, "time": 0.64875} +{"mode": "train", "epoch": 2, "iter": 2150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.70028, "loss": 0.00092, "grad_norm": 0.00656, "time": 0.65349} +{"mode": "train", "epoch": 2, "iter": 2200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.67933, "loss": 0.00096, "grad_norm": 0.00652, "time": 0.62559} +{"mode": "train", "epoch": 2, "iter": 2250, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.0009, "acc_pose": 0.67662, "loss": 0.0009, "grad_norm": 0.00812, "time": 0.65078} +{"mode": "train", "epoch": 2, "iter": 2300, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.6874, "loss": 0.00093, "grad_norm": 0.00776, "time": 0.65056} +{"mode": "train", "epoch": 2, "iter": 2350, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.68938, "loss": 0.00096, "grad_norm": 0.00664, "time": 0.62322} +{"mode": "train", "epoch": 2, "iter": 2400, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00091, "acc_pose": 0.67349, "loss": 0.00091, "grad_norm": 0.00666, "time": 0.66025} +{"mode": "train", "epoch": 2, "iter": 2450, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00093, "acc_pose": 0.67116, "loss": 0.00093, "grad_norm": 0.00697, "time": 0.64306} +{"mode": "train", "epoch": 2, "iter": 2500, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00099, "acc_pose": 0.66895, "loss": 0.00099, "grad_norm": 0.00695, "time": 0.62085} +{"mode": "train", "epoch": 2, "iter": 2550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71097, "loss": 0.00091, "grad_norm": 0.00702, "time": 0.64699} +{"mode": "train", "epoch": 2, "iter": 2600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67655, "loss": 0.00097, "grad_norm": 0.00686, "time": 0.6468} +{"mode": "train", "epoch": 2, "iter": 2650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.0009, "acc_pose": 0.70661, "loss": 0.0009, "grad_norm": 0.00666, "time": 0.63179} +{"mode": "train", "epoch": 2, "iter": 2700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69065, "loss": 0.00092, "grad_norm": 0.00717, "time": 0.62539} +{"mode": "train", "epoch": 2, "iter": 2750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68865, "loss": 0.00097, "grad_norm": 0.00685, "time": 0.63743} +{"mode": "train", "epoch": 2, "iter": 2800, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00092, "acc_pose": 0.69871, "loss": 0.00092, "grad_norm": 0.00802, "time": 0.65955} +{"mode": "train", "epoch": 2, "iter": 2850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.66835, "loss": 0.00096, "grad_norm": 0.00767, "time": 0.62892} +{"mode": "train", "epoch": 2, "iter": 2900, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.67225, "loss": 0.00094, "grad_norm": 0.00768, "time": 0.67341} +{"mode": "train", "epoch": 2, "iter": 2950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.67246, "loss": 0.00105, "grad_norm": 0.00836, "time": 0.63366} +{"mode": "train", "epoch": 2, "iter": 3000, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00092, "acc_pose": 0.70562, "loss": 0.00092, "grad_norm": 0.00792, "time": 0.63646} +{"mode": "train", "epoch": 2, "iter": 3050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00099, "acc_pose": 0.68158, "loss": 0.00099, "grad_norm": 0.00743, "time": 0.66219} +{"mode": "train", "epoch": 2, "iter": 3100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.0009, "acc_pose": 0.70228, "loss": 0.0009, "grad_norm": 0.00774, "time": 0.62769} +{"mode": "train", "epoch": 2, "iter": 3150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.70597, "loss": 0.00091, "grad_norm": 0.00809, "time": 0.62662} +{"mode": "train", "epoch": 2, "iter": 3200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.66824, "loss": 0.00094, "grad_norm": 0.00685, "time": 0.63451} +{"mode": "train", "epoch": 2, "iter": 3250, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.001, "acc_pose": 0.6773, "loss": 0.001, "grad_norm": 0.00721, "time": 0.65332} +{"mode": "train", "epoch": 2, "iter": 3300, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00095, "acc_pose": 0.67253, "loss": 0.00095, "grad_norm": 0.00729, "time": 0.63959} +{"mode": "train", "epoch": 2, "iter": 3350, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.6591, "loss": 0.00096, "grad_norm": 0.0069, "time": 0.63778} +{"mode": "train", "epoch": 2, "iter": 3400, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.66183, "loss": 0.00095, "grad_norm": 0.00741, "time": 0.63941} +{"mode": "train", "epoch": 2, "iter": 3450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.69113, "loss": 0.00097, "grad_norm": 0.00715, "time": 0.63033} +{"mode": "train", "epoch": 2, "iter": 3500, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00101, "acc_pose": 0.66438, "loss": 0.00101, "grad_norm": 0.00798, "time": 0.63005} +{"mode": "train", "epoch": 2, "iter": 3550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67768, "loss": 0.00096, "grad_norm": 0.00651, "time": 0.63015} +{"mode": "train", "epoch": 2, "iter": 3600, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.66477, "loss": 0.00095, "grad_norm": 0.00836, "time": 0.64111} +{"mode": "train", "epoch": 2, "iter": 3650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00089, "acc_pose": 0.70172, "loss": 0.00089, "grad_norm": 0.00738, "time": 0.65949} +{"mode": "train", "epoch": 2, "iter": 3700, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00089, "acc_pose": 0.6957, "loss": 0.00089, "grad_norm": 0.0063, "time": 0.63619} +{"mode": "train", "epoch": 2, "iter": 3750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.71461, "loss": 0.0009, "grad_norm": 0.00682, "time": 0.62781} +{"mode": "train", "epoch": 2, "iter": 3800, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.68934, "loss": 0.00094, "grad_norm": 0.00674, "time": 0.6381} +{"mode": "train", "epoch": 2, "iter": 3850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67801, "loss": 0.00095, "grad_norm": 0.00706, "time": 0.63649} +{"mode": "train", "epoch": 2, "iter": 3900, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.0009, "acc_pose": 0.67919, "loss": 0.0009, "grad_norm": 0.00655, "time": 0.63636} +{"mode": "train", "epoch": 2, "iter": 3950, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00093, "acc_pose": 0.69458, "loss": 0.00093, "grad_norm": 0.00759, "time": 0.6674} +{"mode": "train", "epoch": 2, "iter": 4000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67216, "loss": 0.00101, "grad_norm": 0.00825, "time": 0.63131} +{"mode": "train", "epoch": 2, "iter": 4050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66581, "loss": 0.00099, "grad_norm": 0.00643, "time": 0.62797} +{"mode": "train", "epoch": 2, "iter": 4100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67215, "loss": 0.00099, "grad_norm": 0.00701, "time": 0.65667} +{"mode": "train", "epoch": 2, "iter": 4150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67005, "loss": 0.00099, "grad_norm": 0.00801, "time": 0.6407} +{"mode": "train", "epoch": 2, "iter": 4200, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00096, "acc_pose": 0.66965, "loss": 0.00096, "grad_norm": 0.00682, "time": 0.63464} +{"mode": "train", "epoch": 2, "iter": 4250, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00094, "acc_pose": 0.685, "loss": 0.00094, "grad_norm": 0.00665, "time": 0.63479} +{"mode": "train", "epoch": 2, "iter": 4300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69498, "loss": 0.00094, "grad_norm": 0.00647, "time": 0.63533} +{"mode": "train", "epoch": 2, "iter": 4350, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00088, "acc_pose": 0.70804, "loss": 0.00088, "grad_norm": 0.0067, "time": 0.63458} +{"mode": "train", "epoch": 2, "iter": 4400, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.63965, "loss": 0.00103, "grad_norm": 0.00727, "time": 0.63475} +{"mode": "train", "epoch": 2, "iter": 4450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.69947, "loss": 0.00093, "grad_norm": 0.00677, "time": 0.6324} +{"mode": "train", "epoch": 2, "iter": 4500, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.66691, "loss": 0.00097, "grad_norm": 0.00649, "time": 0.63325} +{"mode": "train", "epoch": 2, "iter": 4550, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.67495, "loss": 0.00094, "grad_norm": 0.00621, "time": 0.66956} +{"mode": "train", "epoch": 2, "iter": 4600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.68528, "loss": 0.00098, "grad_norm": 0.00764, "time": 0.63555} +{"mode": "train", "epoch": 2, "iter": 4650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00092, "acc_pose": 0.68552, "loss": 0.00092, "grad_norm": 0.00868, "time": 0.63227} +{"mode": "train", "epoch": 2, "iter": 4700, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00098, "acc_pose": 0.66791, "loss": 0.00098, "grad_norm": 0.00714, "time": 0.62784} +{"mode": "train", "epoch": 2, "iter": 4750, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00098, "acc_pose": 0.67903, "loss": 0.00098, "grad_norm": 0.00767, "time": 0.6611} +{"mode": "train", "epoch": 2, "iter": 4800, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00094, "acc_pose": 0.69479, "loss": 0.00094, "grad_norm": 0.00711, "time": 0.64752} +{"mode": "train", "epoch": 2, "iter": 4850, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00092, "acc_pose": 0.67876, "loss": 0.00092, "grad_norm": 0.00743, "time": 0.61779} +{"mode": "train", "epoch": 2, "iter": 4900, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.001, "acc_pose": 0.654, "loss": 0.001, "grad_norm": 0.00805, "time": 0.66904} +{"mode": "train", "epoch": 2, "iter": 4950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.66428, "loss": 0.00092, "grad_norm": 0.00789, "time": 0.63713} +{"mode": "train", "epoch": 2, "iter": 5000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65144, "loss": 0.00101, "grad_norm": 0.00705, "time": 0.63173} +{"mode": "train", "epoch": 2, "iter": 5050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.69388, "loss": 0.00093, "grad_norm": 0.00787, "time": 0.63205} +{"mode": "train", "epoch": 2, "iter": 5100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.67377, "loss": 0.00098, "grad_norm": 0.00796, "time": 0.63282} +{"mode": "train", "epoch": 2, "iter": 5150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.69913, "loss": 0.00093, "grad_norm": 0.0072, "time": 0.63455} +{"mode": "train", "epoch": 2, "iter": 5200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.70321, "loss": 0.00097, "grad_norm": 0.00732, "time": 0.63343} +{"mode": "train", "epoch": 2, "iter": 5250, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00091, "acc_pose": 0.69733, "loss": 0.00091, "grad_norm": 0.00607, "time": 0.66085} +{"mode": "train", "epoch": 2, "iter": 5300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69469, "loss": 0.00095, "grad_norm": 0.00741, "time": 0.64079} +{"mode": "train", "epoch": 2, "iter": 5350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00085, "acc_pose": 0.69548, "loss": 0.00085, "grad_norm": 0.00641, "time": 0.62537} +{"mode": "train", "epoch": 2, "iter": 5400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65917, "loss": 0.00097, "grad_norm": 0.00695, "time": 0.65627} +{"mode": "train", "epoch": 2, "iter": 5450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67794, "loss": 0.00096, "grad_norm": 0.00836, "time": 0.63666} +{"mode": "train", "epoch": 2, "iter": 5500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67327, "loss": 0.00096, "grad_norm": 0.00675, "time": 0.62832} +{"mode": "train", "epoch": 2, "iter": 5550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68357, "loss": 0.00095, "grad_norm": 0.00668, "time": 0.62997} +{"mode": "train", "epoch": 2, "iter": 5600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68858, "loss": 0.00092, "grad_norm": 0.00656, "time": 0.66509} +{"mode": "train", "epoch": 2, "iter": 5650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.6801, "loss": 0.00092, "grad_norm": 0.00645, "time": 0.65068} +{"mode": "train", "epoch": 2, "iter": 5700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.68166, "loss": 0.00091, "grad_norm": 0.00656, "time": 0.63033} +{"mode": "train", "epoch": 2, "iter": 5750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.6947, "loss": 0.00093, "grad_norm": 0.0069, "time": 0.6563} +{"mode": "train", "epoch": 2, "iter": 5800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67997, "loss": 0.00095, "grad_norm": 0.00733, "time": 0.62506} +{"mode": "train", "epoch": 2, "iter": 5850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66043, "loss": 0.00097, "grad_norm": 0.00706, "time": 0.62496} +{"mode": "train", "epoch": 2, "iter": 5900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69497, "loss": 0.00092, "grad_norm": 0.00719, "time": 0.65717} +{"mode": "train", "epoch": 2, "iter": 5950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66399, "loss": 0.00097, "grad_norm": 0.00759, "time": 0.64469} +{"mode": "train", "epoch": 2, "iter": 6000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66827, "loss": 0.00098, "grad_norm": 0.00691, "time": 0.64121} +{"mode": "train", "epoch": 2, "iter": 6050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68783, "loss": 0.00099, "grad_norm": 0.00806, "time": 0.63074} +{"mode": "train", "epoch": 2, "iter": 6100, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00093, "acc_pose": 0.68063, "loss": 0.00093, "grad_norm": 0.0071, "time": 0.6286} +{"mode": "train", "epoch": 2, "iter": 6150, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00099, "acc_pose": 0.65779, "loss": 0.00099, "grad_norm": 0.00724, "time": 0.65717} +{"mode": "train", "epoch": 2, "iter": 6200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67422, "loss": 0.001, "grad_norm": 0.00735, "time": 0.64107} +{"mode": "train", "epoch": 2, "iter": 6250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67619, "loss": 0.00098, "grad_norm": 0.00743, "time": 0.62852} +{"mode": "train", "epoch": 2, "iter": 6300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.70791, "loss": 0.00094, "grad_norm": 0.00723, "time": 0.6338} +{"mode": "train", "epoch": 2, "iter": 6350, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00102, "acc_pose": 0.65896, "loss": 0.00102, "grad_norm": 0.00667, "time": 0.63184} +{"mode": "train", "epoch": 2, "iter": 6400, "lr": 1e-05, "memory": 17294, "data_time": 0.00022, "heatmap_loss": 0.00096, "acc_pose": 0.6964, "loss": 0.00096, "grad_norm": 0.00796, "time": 0.65954} +{"mode": "train", "epoch": 2, "iter": 6450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.67854, "loss": 0.00096, "grad_norm": 0.00669, "time": 0.64109} +{"mode": "train", "epoch": 2, "iter": 6500, "lr": 1e-05, "memory": 17294, "data_time": 0.00021, "heatmap_loss": 0.00098, "acc_pose": 0.69249, "loss": 0.00098, "grad_norm": 0.00766, "time": 0.63442} +{"mode": "train", "epoch": 2, "iter": 6550, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.68378, "loss": 0.00096, "grad_norm": 0.00743, "time": 0.6349} +{"mode": "train", "epoch": 2, "iter": 6600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65148, "loss": 0.00102, "grad_norm": 0.00779, "time": 0.63491} +{"mode": "train", "epoch": 2, "iter": 6650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.69138, "loss": 0.00096, "grad_norm": 0.00692, "time": 0.6355} +{"mode": "train", "epoch": 2, "iter": 6700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67121, "loss": 0.00097, "grad_norm": 0.00679, "time": 0.63468} +{"mode": "train", "epoch": 2, "iter": 6750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.71334, "loss": 0.00095, "grad_norm": 0.00719, "time": 0.67313} +{"mode": "train", "epoch": 2, "iter": 6800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.63195, "loss": 0.00097, "grad_norm": 0.0074, "time": 0.6248} +{"mode": "train", "epoch": 2, "iter": 6850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.70695, "loss": 0.00097, "grad_norm": 0.00819, "time": 0.62597} +{"mode": "train", "epoch": 2, "iter": 6900, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.67717, "loss": 0.00097, "grad_norm": 0.00713, "time": 0.66525} +{"mode": "train", "epoch": 2, "iter": 6950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68019, "loss": 0.00097, "grad_norm": 0.00835, "time": 0.63914} +{"mode": "train", "epoch": 2, "iter": 7000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.67195, "loss": 0.00093, "grad_norm": 0.00745, "time": 0.61784} +{"mode": "train", "epoch": 2, "iter": 7050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68794, "loss": 0.00097, "grad_norm": 0.00657, "time": 0.6782} +{"mode": "train", "epoch": 2, "iter": 7100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.69295, "loss": 0.00095, "grad_norm": 0.0072, "time": 0.63298} +{"mode": "train", "epoch": 2, "iter": 7150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.6596, "loss": 0.00098, "grad_norm": 0.00736, "time": 0.62758} +{"mode": "train", "epoch": 2, "iter": 7200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66716, "loss": 0.001, "grad_norm": 0.00889, "time": 0.62828} +{"mode": "train", "epoch": 2, "iter": 7250, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.66064, "loss": 0.00096, "grad_norm": 0.00743, "time": 0.62906} +{"mode": "train", "epoch": 2, "iter": 7300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.63846, "loss": 0.00098, "grad_norm": 0.00856, "time": 0.62914} +{"mode": "train", "epoch": 2, "iter": 7350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66818, "loss": 0.00097, "grad_norm": 0.0084, "time": 0.67892} +{"mode": "train", "epoch": 2, "iter": 7400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68256, "loss": 0.00096, "grad_norm": 0.00873, "time": 0.64074} +{"mode": "train", "epoch": 2, "iter": 7450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66272, "loss": 0.00099, "grad_norm": 0.00842, "time": 0.62186} +{"mode": "train", "epoch": 2, "iter": 7500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65407, "loss": 0.00102, "grad_norm": 0.00758, "time": 0.65228} +{"mode": "train", "epoch": 2, "iter": 7550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66405, "loss": 0.00098, "grad_norm": 0.00801, "time": 0.65401} +{"mode": "train", "epoch": 2, "iter": 7600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.64298, "loss": 0.00102, "grad_norm": 0.00736, "time": 0.62027} +{"mode": "train", "epoch": 2, "iter": 7650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00108, "acc_pose": 0.60939, "loss": 0.00108, "grad_norm": 0.00808, "time": 0.63003} +{"mode": "train", "epoch": 2, "iter": 7700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68909, "loss": 0.00097, "grad_norm": 0.00781, "time": 0.63769} +{"mode": "train", "epoch": 2, "iter": 7750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67553, "loss": 0.00097, "grad_norm": 0.00893, "time": 0.63652} +{"mode": "train", "epoch": 2, "iter": 7800, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.6607, "loss": 0.00094, "grad_norm": 0.00681, "time": 0.637} +{"mode": "train", "epoch": 2, "iter": 7850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68918, "loss": 0.00095, "grad_norm": 0.00697, "time": 0.637} +{"mode": "train", "epoch": 2, "iter": 7900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.67318, "loss": 0.00092, "grad_norm": 0.00728, "time": 0.63301} +{"mode": "train", "epoch": 2, "iter": 7950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00088, "acc_pose": 0.70182, "loss": 0.00088, "grad_norm": 0.00625, "time": 0.6282} +{"mode": "train", "epoch": 2, "iter": 8000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.66473, "loss": 0.00096, "grad_norm": 0.0076, "time": 0.62846} +{"mode": "train", "epoch": 2, "iter": 8050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.0009, "acc_pose": 0.69176, "loss": 0.0009, "grad_norm": 0.00741, "time": 0.6365} +{"mode": "train", "epoch": 2, "iter": 8100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66075, "loss": 0.00097, "grad_norm": 0.00681, "time": 0.64965} +{"mode": "train", "epoch": 2, "iter": 8150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68057, "loss": 0.00095, "grad_norm": 0.00705, "time": 0.63823} +{"mode": "train", "epoch": 2, "iter": 8200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67578, "loss": 0.00096, "grad_norm": 0.00821, "time": 0.63133} +{"mode": "train", "epoch": 2, "iter": 8250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65423, "loss": 0.00101, "grad_norm": 0.00803, "time": 0.6318} +{"mode": "train", "epoch": 2, "iter": 8300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.68681, "loss": 0.00098, "grad_norm": 0.00671, "time": 0.63223} +{"mode": "train", "epoch": 2, "iter": 8350, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.69007, "loss": 0.00094, "grad_norm": 0.00795, "time": 0.63399} +{"mode": "train", "epoch": 2, "iter": 8400, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.0009, "acc_pose": 0.6651, "loss": 0.0009, "grad_norm": 0.00651, "time": 0.64501} +{"mode": "train", "epoch": 2, "iter": 8450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.68644, "loss": 0.00093, "grad_norm": 0.00737, "time": 0.64993} +{"mode": "train", "epoch": 2, "iter": 8500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68859, "loss": 0.00093, "grad_norm": 0.00663, "time": 0.63919} +{"mode": "train", "epoch": 2, "iter": 8550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67082, "loss": 0.00096, "grad_norm": 0.00749, "time": 0.62804} +{"mode": "train", "epoch": 2, "iter": 8600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.6734, "loss": 0.001, "grad_norm": 0.0082, "time": 0.62314} +{"mode": "train", "epoch": 2, "iter": 8650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.69076, "loss": 0.00097, "grad_norm": 0.00797, "time": 0.66015} +{"mode": "train", "epoch": 2, "iter": 8700, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.65409, "loss": 0.00095, "grad_norm": 0.007, "time": 0.63662} +{"mode": "train", "epoch": 2, "iter": 8750, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.68014, "loss": 0.00095, "grad_norm": 0.00805, "time": 0.62588} +{"mode": "train", "epoch": 2, "iter": 8800, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.65658, "loss": 0.00103, "grad_norm": 0.0086, "time": 0.6734} +{"mode": "train", "epoch": 2, "iter": 8850, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00098, "acc_pose": 0.69539, "loss": 0.00098, "grad_norm": 0.00724, "time": 0.63275} +{"mode": "train", "epoch": 2, "iter": 8900, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.68815, "loss": 0.00096, "grad_norm": 0.00705, "time": 0.64912} +{"mode": "train", "epoch": 2, "iter": 8950, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.65621, "loss": 0.00103, "grad_norm": 0.00699, "time": 0.64577} +{"mode": "train", "epoch": 2, "iter": 9000, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00091, "acc_pose": 0.71776, "loss": 0.00091, "grad_norm": 0.00617, "time": 0.62768} +{"mode": "train", "epoch": 2, "iter": 9050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.6637, "loss": 0.00093, "grad_norm": 0.00702, "time": 0.662} +{"mode": "train", "epoch": 2, "iter": 9100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00099, "acc_pose": 0.66314, "loss": 0.00099, "grad_norm": 0.00731, "time": 0.64524} +{"mode": "train", "epoch": 2, "iter": 9150, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.71841, "loss": 0.00095, "grad_norm": 0.00802, "time": 0.6582} +{"mode": "train", "epoch": 2, "iter": 9200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.69495, "loss": 0.00096, "grad_norm": 0.0072, "time": 0.63299} +{"mode": "train", "epoch": 2, "iter": 9250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.68429, "loss": 0.00098, "grad_norm": 0.00675, "time": 0.6151} +{"mode": "train", "epoch": 2, "iter": 9300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.6639, "loss": 0.00093, "grad_norm": 0.00818, "time": 0.68522} +{"mode": "train", "epoch": 2, "iter": 9350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.66411, "loss": 0.00091, "grad_norm": 0.0067, "time": 0.63445} +{"mode": "train", "epoch": 2, "iter": 9400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67307, "loss": 0.001, "grad_norm": 0.00748, "time": 0.61898} +{"mode": "train", "epoch": 2, "iter": 9450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68548, "loss": 0.00099, "grad_norm": 0.00761, "time": 0.62394} +{"mode": "train", "epoch": 2, "iter": 9500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.6634, "loss": 0.00096, "grad_norm": 0.00669, "time": 0.67968} +{"mode": "train", "epoch": 2, "iter": 9550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68411, "loss": 0.00095, "grad_norm": 0.00737, "time": 0.62949} +{"mode": "train", "epoch": 2, "iter": 9600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66598, "loss": 0.001, "grad_norm": 0.00683, "time": 0.62779} +{"mode": "train", "epoch": 2, "iter": 9650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69474, "loss": 0.00095, "grad_norm": 0.0068, "time": 0.62801} +{"mode": "train", "epoch": 2, "iter": 9700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.65696, "loss": 0.00096, "grad_norm": 0.00698, "time": 0.62801} +{"mode": "train", "epoch": 2, "iter": 9750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66223, "loss": 0.00099, "grad_norm": 0.00671, "time": 0.62907} +{"mode": "train", "epoch": 2, "iter": 9800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68309, "loss": 0.00094, "grad_norm": 0.00651, "time": 0.62923} +{"mode": "train", "epoch": 2, "iter": 9850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.69502, "loss": 0.00096, "grad_norm": 0.00763, "time": 0.63112} +{"mode": "train", "epoch": 2, "iter": 9900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.69379, "loss": 0.00091, "grad_norm": 0.00696, "time": 0.65838} +{"mode": "train", "epoch": 2, "iter": 9950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68094, "loss": 0.00095, "grad_norm": 0.00805, "time": 0.63377} +{"mode": "train", "epoch": 2, "iter": 10000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67145, "loss": 0.00095, "grad_norm": 0.00699, "time": 0.63041} +{"mode": "train", "epoch": 2, "iter": 10050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67068, "loss": 0.00095, "grad_norm": 0.00651, "time": 0.63365} +{"mode": "train", "epoch": 2, "iter": 10100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.64732, "loss": 0.00094, "grad_norm": 0.00692, "time": 0.63042} +{"mode": "train", "epoch": 2, "iter": 10150, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.67606, "loss": 0.00096, "grad_norm": 0.00765, "time": 0.62843} +{"mode": "train", "epoch": 2, "iter": 10200, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00098, "acc_pose": 0.67467, "loss": 0.00098, "grad_norm": 0.0073, "time": 0.68783} +{"mode": "train", "epoch": 2, "iter": 10250, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.66248, "loss": 0.00095, "grad_norm": 0.00722, "time": 0.62707} +{"mode": "train", "epoch": 2, "iter": 10300, "lr": 1e-05, "memory": 17294, "data_time": 0.00022, "heatmap_loss": 0.00094, "acc_pose": 0.69043, "loss": 0.00094, "grad_norm": 0.00668, "time": 0.63132} +{"mode": "train", "epoch": 2, "iter": 10350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.68134, "loss": 0.00097, "grad_norm": 0.00687, "time": 0.66943} +{"mode": "train", "epoch": 2, "iter": 10400, "lr": 1e-05, "memory": 17294, "data_time": 0.00026, "heatmap_loss": 0.00096, "acc_pose": 0.66586, "loss": 0.00096, "grad_norm": 0.00672, "time": 0.65482} +{"mode": "train", "epoch": 2, "iter": 10450, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00093, "acc_pose": 0.67096, "loss": 0.00093, "grad_norm": 0.00645, "time": 0.63537} +{"mode": "train", "epoch": 2, "iter": 10500, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00094, "acc_pose": 0.68505, "loss": 0.00094, "grad_norm": 0.00684, "time": 0.64899} +{"mode": "train", "epoch": 2, "iter": 10550, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.67759, "loss": 0.00096, "grad_norm": 0.00664, "time": 0.65155} +{"mode": "train", "epoch": 2, "iter": 10600, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00102, "acc_pose": 0.63233, "loss": 0.00102, "grad_norm": 0.00683, "time": 0.64594} +{"mode": "train", "epoch": 2, "iter": 10650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67755, "loss": 0.00098, "grad_norm": 0.00678, "time": 0.64499} +{"mode": "train", "epoch": 2, "iter": 10700, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.68732, "loss": 0.00094, "grad_norm": 0.00661, "time": 0.64005} +{"mode": "train", "epoch": 2, "iter": 10750, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00093, "acc_pose": 0.69467, "loss": 0.00093, "grad_norm": 0.00711, "time": 0.63766} +{"mode": "train", "epoch": 2, "iter": 10800, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.67066, "loss": 0.00093, "grad_norm": 0.00693, "time": 0.63537} +{"mode": "train", "epoch": 2, "iter": 10850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.71213, "loss": 0.00091, "grad_norm": 0.00642, "time": 0.64148} +{"mode": "train", "epoch": 2, "iter": 10900, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.7151, "loss": 0.00093, "grad_norm": 0.00698, "time": 0.6474} +{"mode": "train", "epoch": 2, "iter": 10950, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00093, "acc_pose": 0.68247, "loss": 0.00093, "grad_norm": 0.00739, "time": 0.64753} +{"mode": "train", "epoch": 2, "iter": 11000, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00099, "acc_pose": 0.66504, "loss": 0.00099, "grad_norm": 0.00687, "time": 0.63997} +{"mode": "train", "epoch": 2, "iter": 11050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00094, "acc_pose": 0.66835, "loss": 0.00094, "grad_norm": 0.00787, "time": 0.63786} +{"mode": "train", "epoch": 2, "iter": 11100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.68717, "loss": 0.00097, "grad_norm": 0.00736, "time": 0.63367} +{"mode": "train", "epoch": 2, "iter": 11150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.68998, "loss": 0.00091, "grad_norm": 0.00691, "time": 0.62577} +{"mode": "train", "epoch": 2, "iter": 11200, "lr": 1e-05, "memory": 17294, "data_time": 0.00021, "heatmap_loss": 0.001, "acc_pose": 0.68319, "loss": 0.001, "grad_norm": 0.00691, "time": 0.67241} +{"mode": "train", "epoch": 2, "iter": 11250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67867, "loss": 0.00096, "grad_norm": 0.00694, "time": 0.62807} +{"mode": "train", "epoch": 2, "iter": 11300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.68142, "loss": 0.00095, "grad_norm": 0.00734, "time": 0.62682} +{"mode": "train", "epoch": 2, "iter": 11350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.7264, "loss": 0.00089, "grad_norm": 0.00685, "time": 0.63333} +{"mode": "train", "epoch": 2, "iter": 11400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.70995, "loss": 0.00091, "grad_norm": 0.00788, "time": 0.66008} +{"mode": "train", "epoch": 2, "iter": 11450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.6961, "loss": 0.00097, "grad_norm": 0.00784, "time": 0.63245} +{"mode": "train", "epoch": 2, "iter": 11500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.71375, "loss": 0.00094, "grad_norm": 0.00674, "time": 0.62709} +{"mode": "train", "epoch": 2, "iter": 11550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.6948, "loss": 0.00096, "grad_norm": 0.00747, "time": 0.62761} +{"mode": "train", "epoch": 2, "iter": 11600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.70296, "loss": 0.00093, "grad_norm": 0.00734, "time": 0.66832} +{"mode": "train", "epoch": 2, "iter": 11650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67162, "loss": 0.00099, "grad_norm": 0.00772, "time": 0.63394} +{"mode": "train", "epoch": 2, "iter": 11700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65585, "loss": 0.00099, "grad_norm": 0.00746, "time": 0.62767} +{"mode": "train", "epoch": 2, "iter": 11750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67584, "loss": 0.00096, "grad_norm": 0.008, "time": 0.6276} +{"mode": "train", "epoch": 2, "iter": 11800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68644, "loss": 0.00095, "grad_norm": 0.00658, "time": 0.66552} +{"mode": "train", "epoch": 2, "iter": 11850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.70802, "loss": 0.00089, "grad_norm": 0.0069, "time": 0.63392} +{"mode": "train", "epoch": 2, "iter": 11900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68132, "loss": 0.00096, "grad_norm": 0.00684, "time": 0.61727} +{"mode": "train", "epoch": 2, "iter": 11950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.69008, "loss": 0.00093, "grad_norm": 0.00807, "time": 0.66883} +{"mode": "train", "epoch": 2, "iter": 12000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.68216, "loss": 0.00097, "grad_norm": 0.00791, "time": 0.62948} +{"mode": "train", "epoch": 2, "iter": 12050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66434, "loss": 0.00098, "grad_norm": 0.00738, "time": 0.63056} +{"mode": "train", "epoch": 2, "iter": 12100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67461, "loss": 0.001, "grad_norm": 0.00819, "time": 0.62998} +{"mode": "train", "epoch": 2, "iter": 12150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67637, "loss": 0.00097, "grad_norm": 0.0071, "time": 0.63079} +{"mode": "train", "epoch": 2, "iter": 12200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67606, "loss": 0.00097, "grad_norm": 0.00655, "time": 0.63217} +{"mode": "train", "epoch": 2, "iter": 12250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66229, "loss": 0.00095, "grad_norm": 0.00687, "time": 0.63249} +{"mode": "train", "epoch": 2, "iter": 12300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.66188, "loss": 0.00107, "grad_norm": 0.00671, "time": 0.63422} +{"mode": "train", "epoch": 2, "iter": 12350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68855, "loss": 0.00097, "grad_norm": 0.00699, "time": 0.63576} +{"mode": "train", "epoch": 2, "iter": 12400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67207, "loss": 0.00099, "grad_norm": 0.00779, "time": 0.63546} +{"mode": "train", "epoch": 2, "iter": 12450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66442, "loss": 0.00101, "grad_norm": 0.00745, "time": 0.63385} +{"mode": "train", "epoch": 2, "iter": 12500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67484, "loss": 0.00099, "grad_norm": 0.00795, "time": 0.62812} +{"mode": "train", "epoch": 2, "iter": 12550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.677, "loss": 0.00096, "grad_norm": 0.00813, "time": 0.65856} +{"mode": "train", "epoch": 2, "iter": 12600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67331, "loss": 0.00099, "grad_norm": 0.0075, "time": 0.6441} +{"mode": "train", "epoch": 2, "iter": 12650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.66492, "loss": 0.00107, "grad_norm": 0.00745, "time": 0.62623} +{"mode": "train", "epoch": 2, "iter": 12700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64429, "loss": 0.00101, "grad_norm": 0.00795, "time": 0.6263} +{"mode": "train", "epoch": 2, "iter": 12750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65703, "loss": 0.001, "grad_norm": 0.00705, "time": 0.66335} +{"mode": "train", "epoch": 2, "iter": 12800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67491, "loss": 0.00097, "grad_norm": 0.00639, "time": 0.62305} +{"mode": "train", "epoch": 2, "iter": 12850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.69118, "loss": 0.00091, "grad_norm": 0.00763, "time": 0.64434} +{"mode": "train", "epoch": 2, "iter": 12900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66369, "loss": 0.00101, "grad_norm": 0.00727, "time": 0.64863} +{"mode": "train", "epoch": 2, "iter": 12950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.69273, "loss": 0.00098, "grad_norm": 0.00727, "time": 0.63875} +{"mode": "train", "epoch": 2, "iter": 13000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.69393, "loss": 0.00096, "grad_norm": 0.00663, "time": 0.62359} +{"mode": "train", "epoch": 2, "iter": 13050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67187, "loss": 0.00099, "grad_norm": 0.00723, "time": 0.6426} +{"mode": "train", "epoch": 2, "iter": 13100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.63462, "loss": 0.00097, "grad_norm": 0.00706, "time": 0.64641} +{"mode": "train", "epoch": 2, "iter": 13150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.69738, "loss": 0.00093, "grad_norm": 0.00658, "time": 0.62954} +{"mode": "train", "epoch": 2, "iter": 13200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66504, "loss": 0.001, "grad_norm": 0.00702, "time": 0.62829} +{"mode": "train", "epoch": 2, "iter": 13250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.66029, "loss": 0.00099, "grad_norm": 0.00855, "time": 0.63191} +{"mode": "train", "epoch": 2, "iter": 13300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.6576, "loss": 0.00101, "grad_norm": 0.0072, "time": 0.64584} +{"mode": "train", "epoch": 2, "iter": 13350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.65641, "loss": 0.00095, "grad_norm": 0.00715, "time": 0.63134} +{"mode": "train", "epoch": 2, "iter": 13400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.68216, "loss": 0.00102, "grad_norm": 0.00843, "time": 0.62721} +{"mode": "train", "epoch": 2, "iter": 13450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.68378, "loss": 0.00103, "grad_norm": 0.0081, "time": 0.62764} +{"mode": "train", "epoch": 2, "iter": 13500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65157, "loss": 0.00099, "grad_norm": 0.00735, "time": 0.64474} +{"mode": "train", "epoch": 2, "iter": 13550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.7041, "loss": 0.00092, "grad_norm": 0.00744, "time": 0.64256} +{"mode": "train", "epoch": 2, "iter": 13600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65323, "loss": 0.001, "grad_norm": 0.00744, "time": 0.6316} +{"mode": "train", "epoch": 2, "iter": 13650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.69126, "loss": 0.00097, "grad_norm": 0.00749, "time": 0.62845} +{"mode": "train", "epoch": 2, "iter": 13700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69799, "loss": 0.00094, "grad_norm": 0.00654, "time": 0.62835} +{"mode": "train", "epoch": 2, "iter": 13750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.67287, "loss": 0.00091, "grad_norm": 0.00622, "time": 0.62781} +{"mode": "train", "epoch": 2, "iter": 13800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66452, "loss": 0.00098, "grad_norm": 0.00659, "time": 0.64279} +{"mode": "train", "epoch": 2, "iter": 13850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68259, "loss": 0.00095, "grad_norm": 0.00731, "time": 0.63648} +{"mode": "train", "epoch": 2, "iter": 13900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68892, "loss": 0.00092, "grad_norm": 0.0073, "time": 0.63173} +{"mode": "train", "epoch": 2, "iter": 13950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.67363, "loss": 0.00093, "grad_norm": 0.00718, "time": 0.66004} +{"mode": "train", "epoch": 2, "iter": 14000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65292, "loss": 0.001, "grad_norm": 0.00874, "time": 0.62176} +{"mode": "train", "epoch": 2, "iter": 14050, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00098, "acc_pose": 0.684, "loss": 0.00098, "grad_norm": 0.00764, "time": 0.66138} +{"mode": "train", "epoch": 2, "iter": 14100, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00102, "acc_pose": 0.65113, "loss": 0.00102, "grad_norm": 0.0074, "time": 0.63282} +{"mode": "train", "epoch": 2, "iter": 14150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68326, "loss": 0.00092, "grad_norm": 0.00621, "time": 0.66461} +{"mode": "train", "epoch": 2, "iter": 14200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.65943, "loss": 0.00096, "grad_norm": 0.00709, "time": 0.63108} +{"mode": "train", "epoch": 2, "iter": 14250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.63945, "loss": 0.00097, "grad_norm": 0.00696, "time": 0.6201} +{"mode": "train", "epoch": 2, "iter": 14300, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00095, "acc_pose": 0.67728, "loss": 0.00095, "grad_norm": 0.00627, "time": 0.69407} +{"mode": "train", "epoch": 2, "iter": 14350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67339, "loss": 0.00097, "grad_norm": 0.00787, "time": 0.62762} +{"mode": "train", "epoch": 2, "iter": 14400, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00101, "acc_pose": 0.66013, "loss": 0.00101, "grad_norm": 0.00731, "time": 0.6271} +{"mode": "train", "epoch": 2, "iter": 14450, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00096, "acc_pose": 0.70016, "loss": 0.00096, "grad_norm": 0.00769, "time": 0.62809} +{"mode": "train", "epoch": 2, "iter": 14500, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.001, "acc_pose": 0.66099, "loss": 0.001, "grad_norm": 0.00699, "time": 0.68669} +{"mode": "train", "epoch": 2, "iter": 14550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66986, "loss": 0.001, "grad_norm": 0.00652, "time": 0.61095} +{"mode": "train", "epoch": 2, "iter": 14600, "lr": 1e-05, "memory": 17294, "data_time": 0.00023, "heatmap_loss": 0.00093, "acc_pose": 0.68137, "loss": 0.00093, "grad_norm": 0.00711, "time": 0.6882} +{"mode": "train", "epoch": 2, "iter": 14650, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00097, "acc_pose": 0.65397, "loss": 0.00097, "grad_norm": 0.00636, "time": 0.63367} +{"mode": "train", "epoch": 2, "iter": 14700, "lr": 1e-05, "memory": 17294, "data_time": 0.00022, "heatmap_loss": 0.00097, "acc_pose": 0.66976, "loss": 0.00097, "grad_norm": 0.00688, "time": 0.63082} +{"mode": "train", "epoch": 2, "iter": 14750, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00098, "acc_pose": 0.6469, "loss": 0.00098, "grad_norm": 0.00693, "time": 0.65648} +{"mode": "train", "epoch": 2, "iter": 14800, "lr": 1e-05, "memory": 17294, "data_time": 0.0002, "heatmap_loss": 0.00096, "acc_pose": 0.66884, "loss": 0.00096, "grad_norm": 0.00762, "time": 0.64085} +{"mode": "train", "epoch": 2, "iter": 14850, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00097, "acc_pose": 0.67495, "loss": 0.00097, "grad_norm": 0.00699, "time": 0.63545} +{"mode": "train", "epoch": 2, "iter": 14900, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00101, "acc_pose": 0.66824, "loss": 0.00101, "grad_norm": 0.00792, "time": 0.63561} +{"mode": "train", "epoch": 2, "iter": 14950, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00093, "acc_pose": 0.65168, "loss": 0.00093, "grad_norm": 0.00652, "time": 0.63709} +{"mode": "train", "epoch": 2, "iter": 15000, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00098, "acc_pose": 0.66842, "loss": 0.00098, "grad_norm": 0.00701, "time": 0.67336} +{"mode": "train", "epoch": 2, "iter": 15050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00101, "acc_pose": 0.68789, "loss": 0.00101, "grad_norm": 0.00748, "time": 0.63504} +{"mode": "train", "epoch": 2, "iter": 15100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.66519, "loss": 0.00096, "grad_norm": 0.00862, "time": 0.63399} +{"mode": "train", "epoch": 2, "iter": 15150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66285, "loss": 0.00097, "grad_norm": 0.0072, "time": 0.63336} +{"mode": "train", "epoch": 2, "iter": 15200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67785, "loss": 0.00095, "grad_norm": 0.00735, "time": 0.63411} +{"mode": "train", "epoch": 2, "iter": 15250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67135, "loss": 0.00097, "grad_norm": 0.00672, "time": 0.63509} +{"mode": "train", "epoch": 2, "iter": 15300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66164, "loss": 0.00097, "grad_norm": 0.00718, "time": 0.68411} +{"mode": "train", "epoch": 2, "iter": 15350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.69083, "loss": 0.00101, "grad_norm": 0.00667, "time": 0.62049} +{"mode": "train", "epoch": 2, "iter": 15400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.6577, "loss": 0.00102, "grad_norm": 0.00767, "time": 0.65273} +{"mode": "train", "epoch": 2, "iter": 15450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.70116, "loss": 0.00097, "grad_norm": 0.00715, "time": 0.64283} +{"mode": "train", "epoch": 2, "iter": 15500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67072, "loss": 0.001, "grad_norm": 0.00794, "time": 0.631} +{"mode": "train", "epoch": 2, "iter": 15550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66532, "loss": 0.00097, "grad_norm": 0.00706, "time": 0.62884} +{"mode": "train", "epoch": 2, "iter": 15600, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.65287, "loss": 0.00103, "grad_norm": 0.00662, "time": 0.67611} +{"mode": "train", "epoch": 2, "iter": 15650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.68094, "loss": 0.00096, "grad_norm": 0.00675, "time": 0.62509} +{"mode": "train", "epoch": 2, "iter": 15700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66832, "loss": 0.00098, "grad_norm": 0.00709, "time": 0.65372} +{"mode": "train", "epoch": 2, "iter": 15750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67963, "loss": 0.00096, "grad_norm": 0.00707, "time": 0.64361} +{"mode": "train", "epoch": 2, "iter": 15800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66239, "loss": 0.00097, "grad_norm": 0.00648, "time": 0.63558} +{"mode": "train", "epoch": 2, "iter": 15850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.64823, "loss": 0.00096, "grad_norm": 0.00608, "time": 0.63434} +{"mode": "train", "epoch": 2, "iter": 15900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67069, "loss": 0.00097, "grad_norm": 0.00767, "time": 0.63323} +{"mode": "train", "epoch": 2, "iter": 15950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.64712, "loss": 0.00102, "grad_norm": 0.00746, "time": 0.64464} +{"mode": "train", "epoch": 2, "iter": 16000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68086, "loss": 0.00093, "grad_norm": 0.00763, "time": 0.65264} +{"mode": "train", "epoch": 2, "iter": 16050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68032, "loss": 0.00093, "grad_norm": 0.00751, "time": 0.62216} +{"mode": "train", "epoch": 2, "iter": 16100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68225, "loss": 0.00099, "grad_norm": 0.00836, "time": 0.64946} +{"mode": "train", "epoch": 2, "iter": 16150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.6905, "loss": 0.00095, "grad_norm": 0.00716, "time": 0.64703} +{"mode": "train", "epoch": 2, "iter": 16200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67614, "loss": 0.00101, "grad_norm": 0.00691, "time": 0.63129} +{"mode": "train", "epoch": 2, "iter": 16250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66293, "loss": 0.00101, "grad_norm": 0.00664, "time": 0.63286} +{"mode": "train", "epoch": 2, "iter": 16300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.69715, "loss": 0.00092, "grad_norm": 0.00661, "time": 0.66776} +{"mode": "train", "epoch": 2, "iter": 16350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66098, "loss": 0.00098, "grad_norm": 0.00671, "time": 0.63995} +{"mode": "train", "epoch": 2, "iter": 16400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.65936, "loss": 0.00095, "grad_norm": 0.00699, "time": 0.62994} +{"mode": "train", "epoch": 2, "iter": 16450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.64136, "loss": 0.001, "grad_norm": 0.00703, "time": 0.63306} +{"mode": "train", "epoch": 2, "iter": 16500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68573, "loss": 0.00097, "grad_norm": 0.0074, "time": 0.6503} +{"mode": "train", "epoch": 2, "iter": 16550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67917, "loss": 0.00095, "grad_norm": 0.0068, "time": 0.65218} +{"mode": "train", "epoch": 2, "iter": 16600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.64097, "loss": 0.00102, "grad_norm": 0.00737, "time": 0.6346} +{"mode": "train", "epoch": 2, "iter": 16650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.66906, "loss": 0.00099, "grad_norm": 0.00923, "time": 0.6321} +{"mode": "train", "epoch": 2, "iter": 16700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.68905, "loss": 0.00098, "grad_norm": 0.00733, "time": 0.63287} +{"mode": "train", "epoch": 2, "iter": 16750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6828, "loss": 0.00099, "grad_norm": 0.00896, "time": 0.66555} +{"mode": "train", "epoch": 2, "iter": 16800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.64955, "loss": 0.00107, "grad_norm": 0.00874, "time": 0.63003} +{"mode": "train", "epoch": 2, "iter": 16850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.64967, "loss": 0.00104, "grad_norm": 0.00734, "time": 0.65117} +{"mode": "train", "epoch": 2, "iter": 16900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.63859, "loss": 0.00105, "grad_norm": 0.00799, "time": 0.65631} +{"mode": "train", "epoch": 2, "iter": 16950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00108, "acc_pose": 0.65905, "loss": 0.00108, "grad_norm": 0.00832, "time": 0.62516} +{"mode": "train", "epoch": 2, "iter": 17000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66577, "loss": 0.00099, "grad_norm": 0.0063, "time": 0.67133} +{"mode": "train", "epoch": 2, "iter": 17050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.6789, "loss": 0.00096, "grad_norm": 0.0073, "time": 0.63294} +{"mode": "train", "epoch": 2, "iter": 17100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.64836, "loss": 0.00094, "grad_norm": 0.00645, "time": 0.62896} +{"mode": "train", "epoch": 2, "iter": 17150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66254, "loss": 0.00095, "grad_norm": 0.00631, "time": 0.63343} +{"mode": "train", "epoch": 2, "iter": 17200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67511, "loss": 0.00099, "grad_norm": 0.00741, "time": 0.66184} +{"mode": "train", "epoch": 2, "iter": 17250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66393, "loss": 0.00099, "grad_norm": 0.00687, "time": 0.62589} +{"mode": "train", "epoch": 2, "iter": 17300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.69412, "loss": 0.00096, "grad_norm": 0.00707, "time": 0.68809} +{"mode": "train", "epoch": 2, "iter": 17350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.6939, "loss": 0.00096, "grad_norm": 0.00756, "time": 0.63027} +{"mode": "train", "epoch": 2, "iter": 17400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69171, "loss": 0.00095, "grad_norm": 0.00707, "time": 0.67604} +{"mode": "train", "epoch": 2, "iter": 17450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67224, "loss": 0.00098, "grad_norm": 0.00622, "time": 0.62967} +{"mode": "train", "epoch": 2, "iter": 17500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69056, "loss": 0.00094, "grad_norm": 0.00768, "time": 0.62881} +{"mode": "train", "epoch": 2, "iter": 17550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.67902, "loss": 0.00091, "grad_norm": 0.0072, "time": 0.66427} +{"mode": "train", "epoch": 2, "iter": 17600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65424, "loss": 0.00102, "grad_norm": 0.007, "time": 0.65594} +{"mode": "train", "epoch": 2, "iter": 17650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.70285, "loss": 0.00095, "grad_norm": 0.00673, "time": 0.62838} +{"mode": "train", "epoch": 2, "iter": 17700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.6723, "loss": 0.00102, "grad_norm": 0.00842, "time": 0.67141} +{"mode": "train", "epoch": 2, "iter": 17750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.68633, "loss": 0.00101, "grad_norm": 0.00765, "time": 0.63222} +{"mode": "train", "epoch": 2, "iter": 17800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.64224, "loss": 0.00097, "grad_norm": 0.00727, "time": 0.65784} +{"mode": "train", "epoch": 2, "iter": 17850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66979, "loss": 0.00102, "grad_norm": 0.00777, "time": 0.63302} +{"mode": "train", "epoch": 2, "iter": 17900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.70467, "loss": 0.00095, "grad_norm": 0.00686, "time": 0.67632} +{"mode": "train", "epoch": 2, "iter": 17950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.70936, "loss": 0.00092, "grad_norm": 0.00659, "time": 0.62933} +{"mode": "train", "epoch": 2, "iter": 18000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64446, "loss": 0.00101, "grad_norm": 0.00678, "time": 0.6356} +{"mode": "train", "epoch": 2, "iter": 18050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.63671, "loss": 0.00101, "grad_norm": 0.0079, "time": 0.66702} +{"mode": "train", "epoch": 2, "iter": 18100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.70134, "loss": 0.00092, "grad_norm": 0.00705, "time": 0.62757} +{"mode": "train", "epoch": 2, "iter": 18150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.6466, "loss": 0.00102, "grad_norm": 0.00685, "time": 0.63747} +{"mode": "train", "epoch": 2, "iter": 18200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.6485, "loss": 0.00096, "grad_norm": 0.0076, "time": 0.63895} +{"mode": "train", "epoch": 2, "iter": 18250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.69321, "loss": 0.00097, "grad_norm": 0.00824, "time": 0.63978} +{"mode": "train", "epoch": 2, "iter": 18300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66921, "loss": 0.00097, "grad_norm": 0.00688, "time": 0.63993} +{"mode": "train", "epoch": 2, "iter": 18350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.6761, "loss": 0.00098, "grad_norm": 0.0074, "time": 0.63412} +{"mode": "train", "epoch": 2, "iter": 18400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66728, "loss": 0.001, "grad_norm": 0.00699, "time": 0.64992} +{"mode": "train", "epoch": 2, "iter": 18450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68025, "loss": 0.00094, "grad_norm": 0.00724, "time": 0.65734} +{"mode": "train", "epoch": 2, "iter": 18500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66176, "loss": 0.00097, "grad_norm": 0.0071, "time": 0.63406} +{"mode": "train", "epoch": 2, "iter": 18550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68726, "loss": 0.00096, "grad_norm": 0.00631, "time": 0.63358} +{"mode": "train", "epoch": 2, "iter": 18600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65894, "loss": 0.00097, "grad_norm": 0.00683, "time": 0.62872} +{"mode": "train", "epoch": 2, "iter": 18650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65064, "loss": 0.00102, "grad_norm": 0.00798, "time": 0.6377} +{"mode": "train", "epoch": 2, "iter": 18700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.70126, "loss": 0.00093, "grad_norm": 0.00646, "time": 0.63714} +{"mode": "train", "epoch": 2, "iter": 18750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.67795, "loss": 0.00102, "grad_norm": 0.00858, "time": 0.63704} +{"mode": "train", "epoch": 2, "iter": 18800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.65663, "loss": 0.00095, "grad_norm": 0.0072, "time": 0.6367} +{"mode": "train", "epoch": 2, "iter": 18850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67007, "loss": 0.00095, "grad_norm": 0.00727, "time": 0.63566} +{"mode": "train", "epoch": 2, "iter": 18900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.64958, "loss": 0.00098, "grad_norm": 0.00802, "time": 0.63772} +{"mode": "train", "epoch": 2, "iter": 18950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.70396, "loss": 0.00091, "grad_norm": 0.00645, "time": 0.63213} +{"mode": "train", "epoch": 2, "iter": 19000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66315, "loss": 0.001, "grad_norm": 0.00743, "time": 0.6296} +{"mode": "train", "epoch": 2, "iter": 19050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67222, "loss": 0.00097, "grad_norm": 0.00689, "time": 0.66212} +{"mode": "train", "epoch": 2, "iter": 19100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.69277, "loss": 0.00093, "grad_norm": 0.00676, "time": 0.62422} +{"mode": "train", "epoch": 2, "iter": 19150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.68372, "loss": 0.00091, "grad_norm": 0.00675, "time": 0.62286} +{"mode": "train", "epoch": 2, "iter": 19200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.69059, "loss": 0.00099, "grad_norm": 0.0067, "time": 0.66462} +{"mode": "train", "epoch": 2, "iter": 19250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.69963, "loss": 0.00096, "grad_norm": 0.00731, "time": 0.64117} +{"mode": "train", "epoch": 2, "iter": 19300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.67412, "loss": 0.00102, "grad_norm": 0.0081, "time": 0.63699} +{"mode": "train", "epoch": 2, "iter": 19350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.64563, "loss": 0.00103, "grad_norm": 0.00713, "time": 0.63559} +{"mode": "train", "epoch": 2, "iter": 19400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.68869, "loss": 0.00095, "grad_norm": 0.00688, "time": 0.62846} +{"mode": "train", "epoch": 2, "iter": 19450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.66185, "loss": 0.00095, "grad_norm": 0.00628, "time": 0.65023} +{"mode": "train", "epoch": 2, "iter": 19500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65325, "loss": 0.00099, "grad_norm": 0.00819, "time": 0.6535} +{"mode": "train", "epoch": 2, "iter": 19550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67154, "loss": 0.00101, "grad_norm": 0.00632, "time": 0.62816} +{"mode": "train", "epoch": 2, "iter": 19600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68255, "loss": 0.00096, "grad_norm": 0.00757, "time": 0.62662} +{"mode": "train", "epoch": 2, "iter": 19650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66694, "loss": 0.00097, "grad_norm": 0.00728, "time": 0.62683} +{"mode": "train", "epoch": 2, "iter": 19700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.65009, "loss": 0.00096, "grad_norm": 0.00725, "time": 0.64349} +{"mode": "train", "epoch": 2, "iter": 19750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.64402, "loss": 0.00102, "grad_norm": 0.00782, "time": 0.64265} +{"mode": "train", "epoch": 2, "iter": 19800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.67662, "loss": 0.00101, "grad_norm": 0.00805, "time": 0.63004} +{"mode": "train", "epoch": 2, "iter": 19850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.6603, "loss": 0.00104, "grad_norm": 0.00798, "time": 0.6308} +{"mode": "train", "epoch": 2, "iter": 19900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66102, "loss": 0.001, "grad_norm": 0.0094, "time": 0.63002} +{"mode": "train", "epoch": 2, "iter": 19950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68799, "loss": 0.00097, "grad_norm": 0.00623, "time": 0.62916} +{"mode": "train", "epoch": 2, "iter": 20000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.67143, "loss": 0.00099, "grad_norm": 0.00679, "time": 0.6305} +{"mode": "train", "epoch": 2, "iter": 20050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65653, "loss": 0.00103, "grad_norm": 0.00711, "time": 0.63013} +{"mode": "train", "epoch": 2, "iter": 20100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65146, "loss": 0.00103, "grad_norm": 0.00703, "time": 0.63083} +{"mode": "train", "epoch": 2, "iter": 20150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.65633, "loss": 0.00101, "grad_norm": 0.00753, "time": 0.66026} +{"mode": "train", "epoch": 2, "iter": 20200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.68706, "loss": 0.00098, "grad_norm": 0.00658, "time": 0.63308} +{"mode": "train", "epoch": 2, "iter": 20250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68234, "loss": 0.00095, "grad_norm": 0.00663, "time": 0.6267} +{"mode": "train", "epoch": 2, "iter": 20300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65058, "loss": 0.00101, "grad_norm": 0.00821, "time": 0.62789} +{"mode": "train", "epoch": 2, "iter": 20350, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.69482, "loss": 0.00095, "grad_norm": 0.00859, "time": 0.62828} +{"mode": "train", "epoch": 2, "iter": 20400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.63743, "loss": 0.00106, "grad_norm": 0.00821, "time": 0.67421} +{"mode": "train", "epoch": 2, "iter": 20450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66705, "loss": 0.00097, "grad_norm": 0.0077, "time": 0.61799} +{"mode": "train", "epoch": 2, "iter": 20500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.63767, "loss": 0.00103, "grad_norm": 0.00745, "time": 0.62559} +{"mode": "train", "epoch": 2, "iter": 20550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.69236, "loss": 0.00096, "grad_norm": 0.0069, "time": 0.63163} +{"mode": "train", "epoch": 2, "iter": 20600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65974, "loss": 0.00097, "grad_norm": 0.00762, "time": 0.66387} +{"mode": "train", "epoch": 2, "iter": 20650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66678, "loss": 0.00103, "grad_norm": 0.00706, "time": 0.62581} +{"mode": "train", "epoch": 2, "iter": 20700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66542, "loss": 0.00098, "grad_norm": 0.00689, "time": 0.64524} +{"mode": "train", "epoch": 2, "iter": 20750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.6794, "loss": 0.00102, "grad_norm": 0.0073, "time": 0.64641} +{"mode": "train", "epoch": 2, "iter": 20800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68925, "loss": 0.00092, "grad_norm": 0.00697, "time": 0.63219} +{"mode": "train", "epoch": 2, "iter": 20850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66832, "loss": 0.00095, "grad_norm": 0.00654, "time": 0.62822} +{"mode": "train", "epoch": 2, "iter": 20900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66765, "loss": 0.00101, "grad_norm": 0.00841, "time": 0.66574} +{"mode": "train", "epoch": 2, "iter": 20950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.64449, "loss": 0.00099, "grad_norm": 0.0076, "time": 0.63682} +{"mode": "train", "epoch": 2, "iter": 21000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.64015, "loss": 0.00105, "grad_norm": 0.00765, "time": 0.6266} +{"mode": "train", "epoch": 2, "iter": 21050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66673, "loss": 0.00097, "grad_norm": 0.00661, "time": 0.66712} +{"mode": "train", "epoch": 2, "iter": 21100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.649, "loss": 0.00099, "grad_norm": 0.00781, "time": 0.62815} +{"mode": "train", "epoch": 2, "iter": 21150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66695, "loss": 0.00099, "grad_norm": 0.00734, "time": 0.62044} +{"mode": "train", "epoch": 2, "iter": 21200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.66938, "loss": 0.00097, "grad_norm": 0.00678, "time": 0.62858} +{"mode": "train", "epoch": 2, "iter": 21250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66899, "loss": 0.00097, "grad_norm": 0.00856, "time": 0.64582} +{"mode": "train", "epoch": 2, "iter": 21300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66918, "loss": 0.00098, "grad_norm": 0.00662, "time": 0.6341} +{"mode": "train", "epoch": 2, "iter": 21350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68821, "loss": 0.00095, "grad_norm": 0.00698, "time": 0.63431} +{"mode": "train", "epoch": 2, "iter": 21400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66271, "loss": 0.00099, "grad_norm": 0.00835, "time": 0.62327} +{"mode": "train", "epoch": 2, "iter": 21450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.69067, "loss": 0.001, "grad_norm": 0.00774, "time": 0.66572} +{"mode": "train", "epoch": 2, "iter": 21500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66176, "loss": 0.00101, "grad_norm": 0.00717, "time": 0.63422} +{"mode": "train", "epoch": 2, "iter": 21550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.6869, "loss": 0.00093, "grad_norm": 0.00886, "time": 0.62812} +{"mode": "train", "epoch": 2, "iter": 21600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.63502, "loss": 0.00104, "grad_norm": 0.0082, "time": 0.65875} +{"mode": "train", "epoch": 2, "iter": 21650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.6407, "loss": 0.00104, "grad_norm": 0.00726, "time": 0.62153} +{"mode": "train", "epoch": 2, "iter": 21700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67887, "loss": 0.00099, "grad_norm": 0.00791, "time": 0.62358} +{"mode": "train", "epoch": 2, "iter": 21750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.6705, "loss": 0.00096, "grad_norm": 0.00682, "time": 0.67511} +{"mode": "train", "epoch": 2, "iter": 21800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.6734, "loss": 0.00098, "grad_norm": 0.00716, "time": 0.63025} +{"mode": "train", "epoch": 2, "iter": 21850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.66232, "loss": 0.00103, "grad_norm": 0.00774, "time": 0.6242} +{"mode": "train", "epoch": 2, "iter": 21900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66374, "loss": 0.00101, "grad_norm": 0.00734, "time": 0.62525} +{"mode": "train", "epoch": 2, "iter": 21950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68423, "loss": 0.00095, "grad_norm": 0.00729, "time": 0.65884} +{"mode": "train", "epoch": 2, "iter": 22000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68006, "loss": 0.00096, "grad_norm": 0.00704, "time": 0.63601} +{"mode": "train", "epoch": 2, "iter": 22050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.67836, "loss": 0.00094, "grad_norm": 0.00716, "time": 0.62846} +{"mode": "train", "epoch": 2, "iter": 22100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67038, "loss": 0.00098, "grad_norm": 0.007, "time": 0.62434} +{"mode": "train", "epoch": 2, "iter": 22150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.68184, "loss": 0.00102, "grad_norm": 0.00728, "time": 0.62588} +{"mode": "train", "epoch": 2, "iter": 22200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64294, "loss": 0.001, "grad_norm": 0.00695, "time": 0.63123} +{"mode": "train", "epoch": 2, "iter": 22250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.64946, "loss": 0.00098, "grad_norm": 0.00653, "time": 0.66266} +{"mode": "train", "epoch": 2, "iter": 22300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.66339, "loss": 0.00105, "grad_norm": 0.00853, "time": 0.65924} +{"mode": "train", "epoch": 2, "iter": 22350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.67318, "loss": 0.00094, "grad_norm": 0.00674, "time": 0.63526} +{"mode": "train", "epoch": 2, "iter": 22400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.63991, "loss": 0.00103, "grad_norm": 0.00781, "time": 0.62794} +{"mode": "train", "epoch": 2, "iter": 22450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68792, "loss": 0.00095, "grad_norm": 0.00697, "time": 0.62791} +{"mode": "train", "epoch": 2, "iter": 22500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.65579, "loss": 0.00103, "grad_norm": 0.00735, "time": 0.67517} +{"mode": "train", "epoch": 2, "iter": 22550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67437, "loss": 0.00096, "grad_norm": 0.0072, "time": 0.624} +{"mode": "train", "epoch": 2, "iter": 22600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67116, "loss": 0.001, "grad_norm": 0.00731, "time": 0.62692} +{"mode": "train", "epoch": 2, "iter": 22650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.68148, "loss": 0.00097, "grad_norm": 0.00822, "time": 0.64879} +{"mode": "train", "epoch": 2, "iter": 22700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65681, "loss": 0.00101, "grad_norm": 0.00766, "time": 0.64299} +{"mode": "train", "epoch": 2, "iter": 22750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.71417, "loss": 0.00096, "grad_norm": 0.00678, "time": 0.62936} +{"mode": "train", "epoch": 2, "iter": 22800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.65494, "loss": 0.00104, "grad_norm": 0.0087, "time": 0.65663} +{"mode": "train", "epoch": 2, "iter": 22850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.65907, "loss": 0.00095, "grad_norm": 0.0076, "time": 0.63529} +{"mode": "train", "epoch": 2, "iter": 22900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.668, "loss": 0.001, "grad_norm": 0.00783, "time": 0.62137} +{"mode": "train", "epoch": 2, "iter": 22950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67662, "loss": 0.00097, "grad_norm": 0.00784, "time": 0.67025} +{"mode": "train", "epoch": 2, "iter": 23000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.65292, "loss": 0.00105, "grad_norm": 0.00719, "time": 0.63096} +{"mode": "train", "epoch": 2, "iter": 23050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.69001, "loss": 0.00096, "grad_norm": 0.00792, "time": 0.62996} +{"mode": "train", "epoch": 2, "iter": 23100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.70004, "loss": 0.00093, "grad_norm": 0.0069, "time": 0.62869} +{"mode": "train", "epoch": 2, "iter": 23150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65135, "loss": 0.00098, "grad_norm": 0.00666, "time": 0.64986} +{"mode": "train", "epoch": 2, "iter": 23200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66742, "loss": 0.00101, "grad_norm": 0.00707, "time": 0.63665} +{"mode": "train", "epoch": 2, "iter": 23250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66308, "loss": 0.00097, "grad_norm": 0.00618, "time": 0.62812} +{"mode": "train", "epoch": 2, "iter": 23300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65693, "loss": 0.00102, "grad_norm": 0.0072, "time": 0.6288} +{"mode": "train", "epoch": 2, "iter": 23350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67206, "loss": 0.00101, "grad_norm": 0.00762, "time": 0.62382} +{"mode": "train", "epoch": 2, "iter": 23400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.6981, "loss": 0.00092, "grad_norm": 0.00668, "time": 0.63859} +{"mode": "train", "epoch": 2, "iter": 23450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.64854, "loss": 0.00097, "grad_norm": 0.00915, "time": 0.64371} +{"mode": "train", "epoch": 2, "iter": 23500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.64823, "loss": 0.00102, "grad_norm": 0.00707, "time": 0.63305} +{"mode": "train", "epoch": 2, "iter": 23550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.68127, "loss": 0.00096, "grad_norm": 0.00697, "time": 0.62819} +{"mode": "train", "epoch": 2, "iter": 23600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66286, "loss": 0.001, "grad_norm": 0.00755, "time": 0.62588} +{"mode": "train", "epoch": 2, "iter": 23650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66189, "loss": 0.001, "grad_norm": 0.00779, "time": 0.62797} +{"mode": "train", "epoch": 2, "iter": 23700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66624, "loss": 0.00097, "grad_norm": 0.0068, "time": 0.64449} +{"mode": "train", "epoch": 2, "iter": 23750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65986, "loss": 0.00101, "grad_norm": 0.00748, "time": 0.63099} +{"mode": "train", "epoch": 2, "iter": 23800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67741, "loss": 0.00096, "grad_norm": 0.00719, "time": 0.62534} +{"mode": "train", "epoch": 2, "iter": 23850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66497, "loss": 0.00103, "grad_norm": 0.00726, "time": 0.65714} +{"mode": "train", "epoch": 2, "iter": 23900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66605, "loss": 0.00101, "grad_norm": 0.00648, "time": 0.63624} +{"mode": "train", "epoch": 2, "iter": 23950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.65831, "loss": 0.00103, "grad_norm": 0.00823, "time": 0.61683} +{"mode": "train", "epoch": 2, "iter": 24000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67573, "loss": 0.00097, "grad_norm": 0.0073, "time": 0.66631} +{"mode": "train", "epoch": 2, "iter": 24050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.64406, "loss": 0.00096, "grad_norm": 0.00656, "time": 0.62678} +{"mode": "train", "epoch": 2, "iter": 24100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68047, "loss": 0.00095, "grad_norm": 0.00568, "time": 0.62711} +{"mode": "train", "epoch": 2, "iter": 24150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.64999, "loss": 0.00099, "grad_norm": 0.00679, "time": 0.62694} +{"mode": "train", "epoch": 2, "iter": 24200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65552, "loss": 0.00099, "grad_norm": 0.00693, "time": 0.62957} +{"mode": "train", "epoch": 2, "iter": 24250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.64017, "loss": 0.001, "grad_norm": 0.00654, "time": 0.64119} +{"mode": "train", "epoch": 2, "iter": 24300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67676, "loss": 0.00096, "grad_norm": 0.00652, "time": 0.64134} +{"mode": "train", "epoch": 2, "iter": 24350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65399, "loss": 0.00102, "grad_norm": 0.00607, "time": 0.63018} +{"mode": "train", "epoch": 2, "iter": 24400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.67168, "loss": 0.00093, "grad_norm": 0.00633, "time": 0.62453} +{"mode": "train", "epoch": 2, "iter": 24450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.6599, "loss": 0.001, "grad_norm": 0.00682, "time": 0.63777} +{"mode": "train", "epoch": 2, "iter": 24500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.66217, "loss": 0.00095, "grad_norm": 0.00698, "time": 0.64545} +{"mode": "train", "epoch": 2, "iter": 24550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.66779, "loss": 0.00094, "grad_norm": 0.00769, "time": 0.62867} +{"mode": "train", "epoch": 2, "iter": 24600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66685, "loss": 0.00095, "grad_norm": 0.00738, "time": 0.62903} +{"mode": "train", "epoch": 2, "iter": 24650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.63974, "loss": 0.00106, "grad_norm": 0.008, "time": 0.62927} +{"mode": "train", "epoch": 2, "iter": 24700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.63138, "loss": 0.00101, "grad_norm": 0.00692, "time": 0.62985} +{"mode": "train", "epoch": 2, "iter": 24750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66973, "loss": 0.00097, "grad_norm": 0.00653, "time": 0.63037} +{"mode": "train", "epoch": 2, "iter": 24800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65933, "loss": 0.001, "grad_norm": 0.00733, "time": 0.63566} +{"mode": "train", "epoch": 2, "iter": 24850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.65043, "loss": 0.00097, "grad_norm": 0.0071, "time": 0.64651} +{"mode": "train", "epoch": 2, "iter": 24900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65823, "loss": 0.001, "grad_norm": 0.00755, "time": 0.62236} +{"mode": "train", "epoch": 2, "iter": 24950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65621, "loss": 0.00098, "grad_norm": 0.00832, "time": 0.62186} +{"mode": "val", "epoch": 2, "iter": 17355, "lr": 1e-05, "AP": 0.61069, "AP .5": 0.85518, "AP .75": 0.67783, "AP (M)": 0.5802, "AP (L)": 0.67146, "AR": 0.67857, "AR .5": 0.90318, "AR .75": 0.74181, "AR (M)": 0.63565, "AR (L)": 0.73954} +{"mode": "train", "epoch": 3, "iter": 50, "lr": 1e-05, "memory": 17294, "data_time": 0.05635, "heatmap_loss": 0.00097, "acc_pose": 0.66023, "loss": 0.00097, "grad_norm": 0.00699, "time": 0.6433} +{"mode": "train", "epoch": 3, "iter": 100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68789, "loss": 0.00099, "grad_norm": 0.00693, "time": 0.59302} +{"mode": "train", "epoch": 3, "iter": 150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66625, "loss": 0.00101, "grad_norm": 0.0077, "time": 0.59619} +{"mode": "train", "epoch": 3, "iter": 200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.6639, "loss": 0.00096, "grad_norm": 0.00764, "time": 0.60457} +{"mode": "train", "epoch": 3, "iter": 250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.68323, "loss": 0.00092, "grad_norm": 0.00712, "time": 0.69214} +{"mode": "train", "epoch": 3, "iter": 300, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00093, "acc_pose": 0.67457, "loss": 0.00093, "grad_norm": 0.0069, "time": 0.62637} +{"mode": "train", "epoch": 3, "iter": 350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.66437, "loss": 0.00098, "grad_norm": 0.00692, "time": 0.6251} +{"mode": "train", "epoch": 3, "iter": 400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.63839, "loss": 0.00099, "grad_norm": 0.00727, "time": 0.62405} +{"mode": "train", "epoch": 3, "iter": 450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68635, "loss": 0.00093, "grad_norm": 0.00622, "time": 0.62042} +{"mode": "train", "epoch": 3, "iter": 500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.67887, "loss": 0.00091, "grad_norm": 0.00684, "time": 0.62087} +{"mode": "train", "epoch": 3, "iter": 550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.67733, "loss": 0.001, "grad_norm": 0.00743, "time": 0.61941} +{"mode": "train", "epoch": 3, "iter": 600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66707, "loss": 0.001, "grad_norm": 0.00725, "time": 0.64219} +{"mode": "train", "epoch": 3, "iter": 650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.67448, "loss": 0.001, "grad_norm": 0.00735, "time": 0.63557} +{"mode": "train", "epoch": 3, "iter": 700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.66939, "loss": 0.00094, "grad_norm": 0.00735, "time": 0.62009} +{"mode": "train", "epoch": 3, "iter": 750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.6704, "loss": 0.00095, "grad_norm": 0.00683, "time": 0.61813} +{"mode": "train", "epoch": 3, "iter": 800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.62712, "loss": 0.001, "grad_norm": 0.00792, "time": 0.64904} +{"mode": "train", "epoch": 3, "iter": 850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.66907, "loss": 0.00097, "grad_norm": 0.00753, "time": 0.63442} +{"mode": "train", "epoch": 3, "iter": 900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.66523, "loss": 0.00097, "grad_norm": 0.00805, "time": 0.61569} +{"mode": "train", "epoch": 3, "iter": 950, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00101, "acc_pose": 0.64515, "loss": 0.00101, "grad_norm": 0.00775, "time": 0.65174} +{"mode": "train", "epoch": 3, "iter": 1000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.669, "loss": 0.00103, "grad_norm": 0.00724, "time": 0.63548} +{"mode": "train", "epoch": 3, "iter": 1050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.65279, "loss": 0.00099, "grad_norm": 0.00771, "time": 0.62418} +{"mode": "train", "epoch": 3, "iter": 1100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65854, "loss": 0.00098, "grad_norm": 0.00734, "time": 0.61977} +{"mode": "train", "epoch": 3, "iter": 1150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.67318, "loss": 0.00099, "grad_norm": 0.00723, "time": 0.62834} +{"mode": "train", "epoch": 3, "iter": 1200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.69383, "loss": 0.00094, "grad_norm": 0.00713, "time": 0.64816} +{"mode": "train", "epoch": 3, "iter": 1250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66436, "loss": 0.00101, "grad_norm": 0.00726, "time": 0.62751} +{"mode": "train", "epoch": 3, "iter": 1300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66527, "loss": 0.001, "grad_norm": 0.00826, "time": 0.6222} +{"mode": "train", "epoch": 3, "iter": 1350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.62813, "loss": 0.00101, "grad_norm": 0.00775, "time": 0.62273} +{"mode": "train", "epoch": 3, "iter": 1400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.67159, "loss": 0.00101, "grad_norm": 0.00764, "time": 0.62308} +{"mode": "train", "epoch": 3, "iter": 1450, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00109, "acc_pose": 0.63296, "loss": 0.00109, "grad_norm": 0.008, "time": 0.62319} +{"mode": "train", "epoch": 3, "iter": 1500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.6644, "loss": 0.00099, "grad_norm": 0.0068, "time": 0.62356} +{"mode": "train", "epoch": 3, "iter": 1550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69195, "loss": 0.00095, "grad_norm": 0.00729, "time": 0.62269} +{"mode": "train", "epoch": 3, "iter": 1600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.64712, "loss": 0.00099, "grad_norm": 0.00697, "time": 0.62262} +{"mode": "train", "epoch": 3, "iter": 1650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.68482, "loss": 0.00096, "grad_norm": 0.00823, "time": 0.62305} +{"mode": "train", "epoch": 3, "iter": 1700, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.001, "acc_pose": 0.65864, "loss": 0.001, "grad_norm": 0.00734, "time": 0.6232} +{"mode": "train", "epoch": 3, "iter": 1750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66271, "loss": 0.001, "grad_norm": 0.00752, "time": 0.62589} +{"mode": "train", "epoch": 3, "iter": 1800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66336, "loss": 0.001, "grad_norm": 0.00736, "time": 0.62666} +{"mode": "train", "epoch": 3, "iter": 1850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6584, "loss": 0.00099, "grad_norm": 0.00681, "time": 0.6266} +{"mode": "train", "epoch": 3, "iter": 1900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.64556, "loss": 0.00101, "grad_norm": 0.00725, "time": 0.6266} +{"mode": "train", "epoch": 3, "iter": 1950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67741, "loss": 0.00096, "grad_norm": 0.00711, "time": 0.62638} +{"mode": "train", "epoch": 3, "iter": 2000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.67618, "loss": 0.00101, "grad_norm": 0.00709, "time": 0.62646} +{"mode": "train", "epoch": 3, "iter": 2050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67042, "loss": 0.00095, "grad_norm": 0.00713, "time": 0.62573} +{"mode": "train", "epoch": 3, "iter": 2100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00107, "acc_pose": 0.64212, "loss": 0.00107, "grad_norm": 0.00728, "time": 0.62644} +{"mode": "train", "epoch": 3, "iter": 2150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67411, "loss": 0.00097, "grad_norm": 0.00697, "time": 0.62702} +{"mode": "train", "epoch": 3, "iter": 2200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.66488, "loss": 0.00104, "grad_norm": 0.00703, "time": 0.62644} +{"mode": "train", "epoch": 3, "iter": 2250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.71272, "loss": 0.00092, "grad_norm": 0.00724, "time": 0.6253} +{"mode": "train", "epoch": 3, "iter": 2300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67183, "loss": 0.00097, "grad_norm": 0.00757, "time": 0.62113} +{"mode": "train", "epoch": 3, "iter": 2350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.63205, "loss": 0.00103, "grad_norm": 0.00769, "time": 0.62171} +{"mode": "train", "epoch": 3, "iter": 2400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.63314, "loss": 0.00101, "grad_norm": 0.00725, "time": 0.65572} +{"mode": "train", "epoch": 3, "iter": 2450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.67303, "loss": 0.00098, "grad_norm": 0.00792, "time": 0.62283} +{"mode": "train", "epoch": 3, "iter": 2500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.65385, "loss": 0.00098, "grad_norm": 0.00803, "time": 0.60996} +{"mode": "train", "epoch": 3, "iter": 2550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.65366, "loss": 0.001, "grad_norm": 0.0075, "time": 0.66506} +{"mode": "train", "epoch": 3, "iter": 2600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.67047, "loss": 0.00098, "grad_norm": 0.00749, "time": 0.62781} +{"mode": "train", "epoch": 3, "iter": 2650, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00101, "acc_pose": 0.66484, "loss": 0.00101, "grad_norm": 0.00827, "time": 0.62446} +{"mode": "train", "epoch": 3, "iter": 2700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.66271, "loss": 0.00098, "grad_norm": 0.00662, "time": 0.62149} +{"mode": "train", "epoch": 3, "iter": 2750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.64396, "loss": 0.00101, "grad_norm": 0.00716, "time": 0.62378} +{"mode": "train", "epoch": 3, "iter": 2800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.679, "loss": 0.001, "grad_norm": 0.00742, "time": 0.64376} +{"mode": "train", "epoch": 3, "iter": 2850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67969, "loss": 0.00097, "grad_norm": 0.00705, "time": 0.62632} +{"mode": "train", "epoch": 3, "iter": 2900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.69066, "loss": 0.00097, "grad_norm": 0.00803, "time": 0.62128} +{"mode": "train", "epoch": 3, "iter": 2950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.62767, "loss": 0.00102, "grad_norm": 0.00759, "time": 0.6214} +{"mode": "train", "epoch": 3, "iter": 3000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.67669, "loss": 0.00094, "grad_norm": 0.0066, "time": 0.62915} +{"mode": "train", "epoch": 3, "iter": 3050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64789, "loss": 0.001, "grad_norm": 0.00761, "time": 0.66024} +{"mode": "train", "epoch": 3, "iter": 3100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.67014, "loss": 0.00099, "grad_norm": 0.00647, "time": 0.62292} +{"mode": "train", "epoch": 3, "iter": 3150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.65712, "loss": 0.00097, "grad_norm": 0.00702, "time": 0.61234} +{"mode": "train", "epoch": 3, "iter": 3200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66767, "loss": 0.001, "grad_norm": 0.00684, "time": 0.64086} +{"mode": "train", "epoch": 3, "iter": 3250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.67921, "loss": 0.00094, "grad_norm": 0.00682, "time": 0.63238} +{"mode": "train", "epoch": 3, "iter": 3300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.68032, "loss": 0.00098, "grad_norm": 0.00669, "time": 0.62557} +{"mode": "train", "epoch": 3, "iter": 3350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.70792, "loss": 0.00095, "grad_norm": 0.00763, "time": 0.62656} +{"mode": "train", "epoch": 3, "iter": 3400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66918, "loss": 0.00101, "grad_norm": 0.00726, "time": 0.62735} +{"mode": "train", "epoch": 3, "iter": 3450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.67137, "loss": 0.00103, "grad_norm": 0.00698, "time": 0.62768} +{"mode": "train", "epoch": 3, "iter": 3500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65807, "loss": 0.00103, "grad_norm": 0.00729, "time": 0.6286} +{"mode": "train", "epoch": 3, "iter": 3550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64356, "loss": 0.001, "grad_norm": 0.00723, "time": 0.6277} +{"mode": "train", "epoch": 3, "iter": 3600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.66583, "loss": 0.00096, "grad_norm": 0.0077, "time": 0.62857} +{"mode": "train", "epoch": 3, "iter": 3650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.66542, "loss": 0.00098, "grad_norm": 0.00706, "time": 0.62804} +{"mode": "train", "epoch": 3, "iter": 3700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68042, "loss": 0.00093, "grad_norm": 0.00592, "time": 0.6501} +{"mode": "train", "epoch": 3, "iter": 3750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.67084, "loss": 0.00095, "grad_norm": 0.00771, "time": 0.62924} +{"mode": "train", "epoch": 3, "iter": 3800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65055, "loss": 0.00103, "grad_norm": 0.0083, "time": 0.62052} +{"mode": "train", "epoch": 3, "iter": 3850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.65436, "loss": 0.00104, "grad_norm": 0.00772, "time": 0.66048} +{"mode": "train", "epoch": 3, "iter": 3900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.65143, "loss": 0.00101, "grad_norm": 0.00811, "time": 0.62643} +{"mode": "train", "epoch": 3, "iter": 3950, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00102, "acc_pose": 0.67686, "loss": 0.00102, "grad_norm": 0.00659, "time": 0.62097} +{"mode": "train", "epoch": 3, "iter": 4000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67742, "loss": 0.00096, "grad_norm": 0.00702, "time": 0.62212} +{"mode": "train", "epoch": 3, "iter": 4050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.65183, "loss": 0.001, "grad_norm": 0.00747, "time": 0.628} +{"mode": "train", "epoch": 3, "iter": 4100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.70809, "loss": 0.00092, "grad_norm": 0.00587, "time": 0.65166} +{"mode": "train", "epoch": 3, "iter": 4150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.65863, "loss": 0.00098, "grad_norm": 0.00661, "time": 0.64383} +{"mode": "train", "epoch": 3, "iter": 4200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.64478, "loss": 0.00104, "grad_norm": 0.00659, "time": 0.61368} +{"mode": "train", "epoch": 3, "iter": 4250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.68246, "loss": 0.001, "grad_norm": 0.0078, "time": 0.61475} +{"mode": "train", "epoch": 3, "iter": 4300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.66646, "loss": 0.00105, "grad_norm": 0.00774, "time": 0.67153} +{"mode": "train", "epoch": 3, "iter": 4350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.65628, "loss": 0.00099, "grad_norm": 0.00673, "time": 0.63274} +{"mode": "train", "epoch": 3, "iter": 4400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.66486, "loss": 0.00096, "grad_norm": 0.00777, "time": 0.61958} +{"mode": "train", "epoch": 3, "iter": 4450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.68247, "loss": 0.00094, "grad_norm": 0.00751, "time": 0.64353} +{"mode": "train", "epoch": 3, "iter": 4500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.66734, "loss": 0.00104, "grad_norm": 0.0087, "time": 0.64069} +{"mode": "train", "epoch": 3, "iter": 4550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00089, "acc_pose": 0.66605, "loss": 0.00089, "grad_norm": 0.00668, "time": 0.62722} +{"mode": "train", "epoch": 3, "iter": 4600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.67411, "loss": 0.001, "grad_norm": 0.0086, "time": 0.61711} +{"mode": "train", "epoch": 3, "iter": 4650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.64832, "loss": 0.00101, "grad_norm": 0.00794, "time": 0.61947} +{"mode": "train", "epoch": 3, "iter": 4700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.65255, "loss": 0.00098, "grad_norm": 0.00753, "time": 0.6501} +{"mode": "train", "epoch": 3, "iter": 4750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.68582, "loss": 0.00094, "grad_norm": 0.00685, "time": 0.64098} +{"mode": "train", "epoch": 3, "iter": 4800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.67246, "loss": 0.00099, "grad_norm": 0.00751, "time": 0.62901} +{"mode": "train", "epoch": 3, "iter": 4850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.66217, "loss": 0.00103, "grad_norm": 0.0074, "time": 0.61495} +{"mode": "train", "epoch": 3, "iter": 4900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67467, "loss": 0.00097, "grad_norm": 0.00739, "time": 0.64795} +{"mode": "train", "epoch": 3, "iter": 4950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.65177, "loss": 0.00102, "grad_norm": 0.00708, "time": 0.64354} +{"mode": "train", "epoch": 3, "iter": 5000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64958, "loss": 0.001, "grad_norm": 0.00766, "time": 0.61984} +{"mode": "train", "epoch": 3, "iter": 5050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67505, "loss": 0.00099, "grad_norm": 0.00849, "time": 0.61846} +{"mode": "train", "epoch": 3, "iter": 5100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.69209, "loss": 0.00096, "grad_norm": 0.00637, "time": 0.65896} +{"mode": "train", "epoch": 3, "iter": 5150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66623, "loss": 0.00103, "grad_norm": 0.00738, "time": 0.64801} +{"mode": "train", "epoch": 3, "iter": 5200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.69226, "loss": 0.00098, "grad_norm": 0.00717, "time": 0.62058} +{"mode": "train", "epoch": 3, "iter": 5250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.6562, "loss": 0.00102, "grad_norm": 0.00682, "time": 0.65255} +{"mode": "train", "epoch": 3, "iter": 5300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.65434, "loss": 0.00095, "grad_norm": 0.00678, "time": 0.62757} +{"mode": "train", "epoch": 3, "iter": 5350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64442, "loss": 0.001, "grad_norm": 0.00699, "time": 0.62067} +{"mode": "train", "epoch": 3, "iter": 5400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.65376, "loss": 0.00105, "grad_norm": 0.00858, "time": 0.63299} +{"mode": "train", "epoch": 3, "iter": 5450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67529, "loss": 0.00097, "grad_norm": 0.00773, "time": 0.63948} +{"mode": "train", "epoch": 3, "iter": 5500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66062, "loss": 0.00101, "grad_norm": 0.0079, "time": 0.62828} +{"mode": "train", "epoch": 3, "iter": 5550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00106, "acc_pose": 0.64179, "loss": 0.00106, "grad_norm": 0.00698, "time": 0.62684} +{"mode": "train", "epoch": 3, "iter": 5600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.67311, "loss": 0.00098, "grad_norm": 0.00728, "time": 0.62365} +{"mode": "train", "epoch": 3, "iter": 5650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.65854, "loss": 0.00101, "grad_norm": 0.00685, "time": 0.62334} +{"mode": "train", "epoch": 3, "iter": 5700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.66254, "loss": 0.00094, "grad_norm": 0.00678, "time": 0.63463} +{"mode": "train", "epoch": 3, "iter": 5750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00107, "acc_pose": 0.64961, "loss": 0.00107, "grad_norm": 0.00844, "time": 0.64344} +{"mode": "train", "epoch": 3, "iter": 5800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.64242, "loss": 0.00103, "grad_norm": 0.00686, "time": 0.63158} +{"mode": "train", "epoch": 3, "iter": 5850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.68221, "loss": 0.00097, "grad_norm": 0.00684, "time": 0.62509} +{"mode": "train", "epoch": 3, "iter": 5900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.6884, "loss": 0.00097, "grad_norm": 0.00794, "time": 0.62553} +{"mode": "train", "epoch": 3, "iter": 5950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00109, "acc_pose": 0.63951, "loss": 0.00109, "grad_norm": 0.00754, "time": 0.62636} +{"mode": "train", "epoch": 3, "iter": 6000, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.67108, "loss": 0.00098, "grad_norm": 0.00805, "time": 0.66861} +{"mode": "train", "epoch": 3, "iter": 6050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65446, "loss": 0.00098, "grad_norm": 0.00792, "time": 0.63368} +{"mode": "train", "epoch": 3, "iter": 6100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64249, "loss": 0.001, "grad_norm": 0.00682, "time": 0.62474} +{"mode": "train", "epoch": 3, "iter": 6150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.64441, "loss": 0.00099, "grad_norm": 0.00796, "time": 0.62267} +{"mode": "train", "epoch": 3, "iter": 6200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65795, "loss": 0.00099, "grad_norm": 0.00729, "time": 0.65977} +{"mode": "train", "epoch": 3, "iter": 6250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65101, "loss": 0.00101, "grad_norm": 0.00752, "time": 0.64024} +{"mode": "train", "epoch": 3, "iter": 6300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00092, "acc_pose": 0.67681, "loss": 0.00092, "grad_norm": 0.00649, "time": 0.63122} +{"mode": "train", "epoch": 3, "iter": 6350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.65421, "loss": 0.00098, "grad_norm": 0.00643, "time": 0.62493} +{"mode": "train", "epoch": 3, "iter": 6400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.66847, "loss": 0.00091, "grad_norm": 0.00688, "time": 0.62483} +{"mode": "train", "epoch": 3, "iter": 6450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67697, "loss": 0.00095, "grad_norm": 0.00753, "time": 0.63509} +{"mode": "train", "epoch": 3, "iter": 6500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67362, "loss": 0.00097, "grad_norm": 0.0079, "time": 0.63494} +{"mode": "train", "epoch": 3, "iter": 6550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67726, "loss": 0.00096, "grad_norm": 0.00675, "time": 0.63488} +{"mode": "train", "epoch": 3, "iter": 6600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68101, "loss": 0.00093, "grad_norm": 0.0079, "time": 0.62711} +{"mode": "train", "epoch": 3, "iter": 6650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67787, "loss": 0.00096, "grad_norm": 0.00718, "time": 0.61786} +{"mode": "train", "epoch": 3, "iter": 6700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65251, "loss": 0.00099, "grad_norm": 0.00771, "time": 0.65556} +{"mode": "train", "epoch": 3, "iter": 6750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66621, "loss": 0.00101, "grad_norm": 0.00886, "time": 0.63176} +{"mode": "train", "epoch": 3, "iter": 6800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.63806, "loss": 0.001, "grad_norm": 0.00726, "time": 0.62734} +{"mode": "train", "epoch": 3, "iter": 6850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.64933, "loss": 0.00105, "grad_norm": 0.00757, "time": 0.62603} +{"mode": "train", "epoch": 3, "iter": 6900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.65524, "loss": 0.00105, "grad_norm": 0.00805, "time": 0.62606} +{"mode": "train", "epoch": 3, "iter": 6950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65495, "loss": 0.00099, "grad_norm": 0.00704, "time": 0.64062} +{"mode": "train", "epoch": 3, "iter": 7000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.64476, "loss": 0.00098, "grad_norm": 0.00655, "time": 0.63709} +{"mode": "train", "epoch": 3, "iter": 7050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.6551, "loss": 0.00101, "grad_norm": 0.00803, "time": 0.62266} +{"mode": "train", "epoch": 3, "iter": 7100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66755, "loss": 0.001, "grad_norm": 0.00768, "time": 0.65816} +{"mode": "train", "epoch": 3, "iter": 7150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.65137, "loss": 0.00101, "grad_norm": 0.00719, "time": 0.6364} +{"mode": "train", "epoch": 3, "iter": 7200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00106, "acc_pose": 0.64515, "loss": 0.00106, "grad_norm": 0.00672, "time": 0.62524} +{"mode": "train", "epoch": 3, "iter": 7250, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66731, "loss": 0.001, "grad_norm": 0.00849, "time": 0.62492} +{"mode": "train", "epoch": 3, "iter": 7300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.64314, "loss": 0.00105, "grad_norm": 0.00856, "time": 0.62523} +{"mode": "train", "epoch": 3, "iter": 7350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.6871, "loss": 0.00099, "grad_norm": 0.00685, "time": 0.65061} +{"mode": "train", "epoch": 3, "iter": 7400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.65151, "loss": 0.00107, "grad_norm": 0.00848, "time": 0.64101} +{"mode": "train", "epoch": 3, "iter": 7450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6538, "loss": 0.00099, "grad_norm": 0.00761, "time": 0.62439} +{"mode": "train", "epoch": 3, "iter": 7500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67249, "loss": 0.00101, "grad_norm": 0.00816, "time": 0.62487} +{"mode": "train", "epoch": 3, "iter": 7550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.69146, "loss": 0.00096, "grad_norm": 0.00773, "time": 0.62625} +{"mode": "train", "epoch": 3, "iter": 7600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.64092, "loss": 0.00094, "grad_norm": 0.00754, "time": 0.64061} +{"mode": "train", "epoch": 3, "iter": 7650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66471, "loss": 0.00095, "grad_norm": 0.00703, "time": 0.63989} +{"mode": "train", "epoch": 3, "iter": 7700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.66348, "loss": 0.00104, "grad_norm": 0.00681, "time": 0.63949} +{"mode": "train", "epoch": 3, "iter": 7750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69329, "loss": 0.00094, "grad_norm": 0.00692, "time": 0.62855} +{"mode": "train", "epoch": 3, "iter": 7800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.669, "loss": 0.00099, "grad_norm": 0.00745, "time": 0.61901} +{"mode": "train", "epoch": 3, "iter": 7850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.67316, "loss": 0.00103, "grad_norm": 0.00858, "time": 0.62871} +{"mode": "train", "epoch": 3, "iter": 7900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.68218, "loss": 0.00098, "grad_norm": 0.00692, "time": 0.64215} +{"mode": "train", "epoch": 3, "iter": 7950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66048, "loss": 0.00098, "grad_norm": 0.00759, "time": 0.63801} +{"mode": "train", "epoch": 3, "iter": 8000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66816, "loss": 0.00098, "grad_norm": 0.00776, "time": 0.62898} +{"mode": "train", "epoch": 3, "iter": 8050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65539, "loss": 0.00101, "grad_norm": 0.00783, "time": 0.63007} +{"mode": "train", "epoch": 3, "iter": 8100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.66505, "loss": 0.00099, "grad_norm": 0.007, "time": 0.63002} +{"mode": "train", "epoch": 3, "iter": 8150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66824, "loss": 0.00098, "grad_norm": 0.00717, "time": 0.63019} +{"mode": "train", "epoch": 3, "iter": 8200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66566, "loss": 0.00099, "grad_norm": 0.00713, "time": 0.62966} +{"mode": "train", "epoch": 3, "iter": 8250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65763, "loss": 0.00097, "grad_norm": 0.00679, "time": 0.63098} +{"mode": "train", "epoch": 3, "iter": 8300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.63834, "loss": 0.00101, "grad_norm": 0.00836, "time": 0.62952} +{"mode": "train", "epoch": 3, "iter": 8350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66833, "loss": 0.00099, "grad_norm": 0.00771, "time": 0.6297} +{"mode": "train", "epoch": 3, "iter": 8400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.64471, "loss": 0.00097, "grad_norm": 0.00668, "time": 0.62309} +{"mode": "train", "epoch": 3, "iter": 8450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.63113, "loss": 0.00099, "grad_norm": 0.00728, "time": 0.66162} +{"mode": "train", "epoch": 3, "iter": 8500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.61624, "loss": 0.00106, "grad_norm": 0.00683, "time": 0.62803} +{"mode": "train", "epoch": 3, "iter": 8550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67306, "loss": 0.00097, "grad_norm": 0.00739, "time": 0.62547} +{"mode": "train", "epoch": 3, "iter": 8600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.7003, "loss": 0.00097, "grad_norm": 0.00735, "time": 0.63945} +{"mode": "train", "epoch": 3, "iter": 8650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.6489, "loss": 0.00103, "grad_norm": 0.00794, "time": 0.65324} +{"mode": "train", "epoch": 3, "iter": 8700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.68071, "loss": 0.001, "grad_norm": 0.0067, "time": 0.62642} +{"mode": "train", "epoch": 3, "iter": 8750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.65024, "loss": 0.00103, "grad_norm": 0.00787, "time": 0.62381} +{"mode": "train", "epoch": 3, "iter": 8800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66293, "loss": 0.00101, "grad_norm": 0.00715, "time": 0.6688} +{"mode": "train", "epoch": 3, "iter": 8850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00092, "acc_pose": 0.68506, "loss": 0.00092, "grad_norm": 0.00849, "time": 0.62271} +{"mode": "train", "epoch": 3, "iter": 8900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65566, "loss": 0.00098, "grad_norm": 0.00759, "time": 0.64741} +{"mode": "train", "epoch": 3, "iter": 8950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66428, "loss": 0.001, "grad_norm": 0.00686, "time": 0.63802} +{"mode": "train", "epoch": 3, "iter": 9000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65679, "loss": 0.001, "grad_norm": 0.00864, "time": 0.62578} +{"mode": "train", "epoch": 3, "iter": 9050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.6643, "loss": 0.00102, "grad_norm": 0.00734, "time": 0.62581} +{"mode": "train", "epoch": 3, "iter": 9100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.68533, "loss": 0.00103, "grad_norm": 0.00876, "time": 0.66686} +{"mode": "train", "epoch": 3, "iter": 9150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65505, "loss": 0.00102, "grad_norm": 0.00871, "time": 0.62394} +{"mode": "train", "epoch": 3, "iter": 9200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.64946, "loss": 0.00104, "grad_norm": 0.0074, "time": 0.6491} +{"mode": "train", "epoch": 3, "iter": 9250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66775, "loss": 0.00099, "grad_norm": 0.00708, "time": 0.64337} +{"mode": "train", "epoch": 3, "iter": 9300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.6808, "loss": 0.001, "grad_norm": 0.00807, "time": 0.62812} +{"mode": "train", "epoch": 3, "iter": 9350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.67275, "loss": 0.00099, "grad_norm": 0.00712, "time": 0.62491} +{"mode": "train", "epoch": 3, "iter": 9400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.68143, "loss": 0.00094, "grad_norm": 0.00663, "time": 0.62486} +{"mode": "train", "epoch": 3, "iter": 9450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.62566, "loss": 0.00105, "grad_norm": 0.00784, "time": 0.66718} +{"mode": "train", "epoch": 3, "iter": 9500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64731, "loss": 0.00101, "grad_norm": 0.00668, "time": 0.63528} +{"mode": "train", "epoch": 3, "iter": 9550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64537, "loss": 0.00101, "grad_norm": 0.00697, "time": 0.62535} +{"mode": "train", "epoch": 3, "iter": 9600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66728, "loss": 0.001, "grad_norm": 0.00745, "time": 0.65846} +{"mode": "train", "epoch": 3, "iter": 9650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00091, "acc_pose": 0.67257, "loss": 0.00091, "grad_norm": 0.00639, "time": 0.6298} +{"mode": "train", "epoch": 3, "iter": 9700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.66612, "loss": 0.00104, "grad_norm": 0.00661, "time": 0.62981} +{"mode": "train", "epoch": 3, "iter": 9750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.6464, "loss": 0.00103, "grad_norm": 0.00723, "time": 0.6262} +{"mode": "train", "epoch": 3, "iter": 9800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65678, "loss": 0.00098, "grad_norm": 0.00601, "time": 0.64225} +{"mode": "train", "epoch": 3, "iter": 9850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.65919, "loss": 0.00095, "grad_norm": 0.00728, "time": 0.63839} +{"mode": "train", "epoch": 3, "iter": 9900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67915, "loss": 0.00097, "grad_norm": 0.00713, "time": 0.63537} +{"mode": "train", "epoch": 3, "iter": 9950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66788, "loss": 0.001, "grad_norm": 0.00738, "time": 0.63539} +{"mode": "train", "epoch": 3, "iter": 10000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6821, "loss": 0.00099, "grad_norm": 0.00722, "time": 0.63533} +{"mode": "train", "epoch": 3, "iter": 10050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.67533, "loss": 0.00094, "grad_norm": 0.00747, "time": 0.62558} +{"mode": "train", "epoch": 3, "iter": 10100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.65081, "loss": 0.00097, "grad_norm": 0.0066, "time": 0.62524} +{"mode": "train", "epoch": 3, "iter": 10150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67479, "loss": 0.00095, "grad_norm": 0.00669, "time": 0.62647} +{"mode": "train", "epoch": 3, "iter": 10200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67255, "loss": 0.001, "grad_norm": 0.00642, "time": 0.64214} +{"mode": "train", "epoch": 3, "iter": 10250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.6746, "loss": 0.00097, "grad_norm": 0.0073, "time": 0.64178} +{"mode": "train", "epoch": 3, "iter": 10300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66362, "loss": 0.00103, "grad_norm": 0.00864, "time": 0.63669} +{"mode": "train", "epoch": 3, "iter": 10350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.65738, "loss": 0.001, "grad_norm": 0.00694, "time": 0.63125} +{"mode": "train", "epoch": 3, "iter": 10400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67355, "loss": 0.00096, "grad_norm": 0.00742, "time": 0.63037} +{"mode": "train", "epoch": 3, "iter": 10450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.66201, "loss": 0.00089, "grad_norm": 0.00648, "time": 0.62107} +{"mode": "train", "epoch": 3, "iter": 10500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.64702, "loss": 0.00103, "grad_norm": 0.0075, "time": 0.6676} +{"mode": "train", "epoch": 3, "iter": 10550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.64195, "loss": 0.001, "grad_norm": 0.00637, "time": 0.63158} +{"mode": "train", "epoch": 3, "iter": 10600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00094, "acc_pose": 0.6793, "loss": 0.00094, "grad_norm": 0.00705, "time": 0.63019} +{"mode": "train", "epoch": 3, "iter": 10650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00093, "acc_pose": 0.68534, "loss": 0.00093, "grad_norm": 0.00683, "time": 0.62048} +{"mode": "train", "epoch": 3, "iter": 10700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.64419, "loss": 0.00098, "grad_norm": 0.00701, "time": 0.67074} +{"mode": "train", "epoch": 3, "iter": 10750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66395, "loss": 0.001, "grad_norm": 0.00669, "time": 0.62781} +{"mode": "train", "epoch": 3, "iter": 10800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00089, "acc_pose": 0.69997, "loss": 0.00089, "grad_norm": 0.00685, "time": 0.61808} +{"mode": "train", "epoch": 3, "iter": 10850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66487, "loss": 0.001, "grad_norm": 0.00724, "time": 0.63456} +{"mode": "train", "epoch": 3, "iter": 10900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.66273, "loss": 0.00095, "grad_norm": 0.00669, "time": 0.64403} +{"mode": "train", "epoch": 3, "iter": 10950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.67103, "loss": 0.00102, "grad_norm": 0.00764, "time": 0.62959} +{"mode": "train", "epoch": 3, "iter": 11000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68968, "loss": 0.00093, "grad_norm": 0.00729, "time": 0.63121} +{"mode": "train", "epoch": 3, "iter": 11050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66847, "loss": 0.00097, "grad_norm": 0.00737, "time": 0.65274} +{"mode": "train", "epoch": 3, "iter": 11100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.66343, "loss": 0.00095, "grad_norm": 0.00622, "time": 0.62879} +{"mode": "train", "epoch": 3, "iter": 11150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66432, "loss": 0.00098, "grad_norm": 0.0084, "time": 0.62812} +{"mode": "train", "epoch": 3, "iter": 11200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.69115, "loss": 0.00094, "grad_norm": 0.00678, "time": 0.6289} +{"mode": "train", "epoch": 3, "iter": 11250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.65671, "loss": 0.00103, "grad_norm": 0.00637, "time": 0.62872} +{"mode": "train", "epoch": 3, "iter": 11300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67426, "loss": 0.00101, "grad_norm": 0.00706, "time": 0.63574} +{"mode": "train", "epoch": 3, "iter": 11350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.69255, "loss": 0.00095, "grad_norm": 0.00619, "time": 0.64524} +{"mode": "train", "epoch": 3, "iter": 11400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.69527, "loss": 0.00099, "grad_norm": 0.00758, "time": 0.6354} +{"mode": "train", "epoch": 3, "iter": 11450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66425, "loss": 0.00102, "grad_norm": 0.00792, "time": 0.62873} +{"mode": "train", "epoch": 3, "iter": 11500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.67632, "loss": 0.00103, "grad_norm": 0.00755, "time": 0.63164} +{"mode": "train", "epoch": 3, "iter": 11550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66128, "loss": 0.00099, "grad_norm": 0.00635, "time": 0.67449} +{"mode": "train", "epoch": 3, "iter": 11600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.68905, "loss": 0.001, "grad_norm": 0.00749, "time": 0.61767} +{"mode": "train", "epoch": 3, "iter": 11650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.69017, "loss": 0.001, "grad_norm": 0.00769, "time": 0.64007} +{"mode": "train", "epoch": 3, "iter": 11700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.64389, "loss": 0.00104, "grad_norm": 0.00843, "time": 0.63769} +{"mode": "train", "epoch": 3, "iter": 11750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.65336, "loss": 0.00098, "grad_norm": 0.00718, "time": 0.63168} +{"mode": "train", "epoch": 3, "iter": 11800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.65463, "loss": 0.00098, "grad_norm": 0.00731, "time": 0.63155} +{"mode": "train", "epoch": 3, "iter": 11850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00096, "acc_pose": 0.67117, "loss": 0.00096, "grad_norm": 0.00779, "time": 0.62665} +{"mode": "train", "epoch": 3, "iter": 11900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.63811, "loss": 0.00099, "grad_norm": 0.00764, "time": 0.62456} +{"mode": "train", "epoch": 3, "iter": 11950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.64423, "loss": 0.00102, "grad_norm": 0.00827, "time": 0.65864} +{"mode": "train", "epoch": 3, "iter": 12000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.64156, "loss": 0.00105, "grad_norm": 0.00681, "time": 0.63281} +{"mode": "train", "epoch": 3, "iter": 12050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.65893, "loss": 0.00105, "grad_norm": 0.00693, "time": 0.63048} +{"mode": "train", "epoch": 3, "iter": 12100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.66164, "loss": 0.00098, "grad_norm": 0.00693, "time": 0.62781} +{"mode": "train", "epoch": 3, "iter": 12150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65869, "loss": 0.00099, "grad_norm": 0.00673, "time": 0.65099} +{"mode": "train", "epoch": 3, "iter": 12200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66349, "loss": 0.00102, "grad_norm": 0.00748, "time": 0.63318} +{"mode": "train", "epoch": 3, "iter": 12250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.63354, "loss": 0.00104, "grad_norm": 0.00727, "time": 0.61891} +{"mode": "train", "epoch": 3, "iter": 12300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.68102, "loss": 0.00102, "grad_norm": 0.00757, "time": 0.66388} +{"mode": "train", "epoch": 3, "iter": 12350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.65267, "loss": 0.00106, "grad_norm": 0.00731, "time": 0.61867} +{"mode": "train", "epoch": 3, "iter": 12400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.6439, "loss": 0.00105, "grad_norm": 0.00696, "time": 0.65619} +{"mode": "train", "epoch": 3, "iter": 12450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66694, "loss": 0.001, "grad_norm": 0.0067, "time": 0.62786} +{"mode": "train", "epoch": 3, "iter": 12500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66406, "loss": 0.00099, "grad_norm": 0.00703, "time": 0.62439} +{"mode": "train", "epoch": 3, "iter": 12550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.6712, "loss": 0.00096, "grad_norm": 0.00715, "time": 0.62499} +{"mode": "train", "epoch": 3, "iter": 12600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.70608, "loss": 0.00097, "grad_norm": 0.00635, "time": 0.62684} +{"mode": "train", "epoch": 3, "iter": 12650, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00104, "acc_pose": 0.66395, "loss": 0.00104, "grad_norm": 0.00726, "time": 0.63357} +{"mode": "train", "epoch": 3, "iter": 12700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00106, "acc_pose": 0.65073, "loss": 0.00106, "grad_norm": 0.00822, "time": 0.63363} +{"mode": "train", "epoch": 3, "iter": 12750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.65666, "loss": 0.00099, "grad_norm": 0.00776, "time": 0.65128} +{"mode": "train", "epoch": 3, "iter": 12800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.6343, "loss": 0.00107, "grad_norm": 0.00868, "time": 0.62909} +{"mode": "train", "epoch": 3, "iter": 12850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.64351, "loss": 0.00103, "grad_norm": 0.00737, "time": 0.63064} +{"mode": "train", "epoch": 3, "iter": 12900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.65066, "loss": 0.00104, "grad_norm": 0.00785, "time": 0.6296} +{"mode": "train", "epoch": 3, "iter": 12950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.67375, "loss": 0.00105, "grad_norm": 0.0071, "time": 0.63031} +{"mode": "train", "epoch": 3, "iter": 13000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65926, "loss": 0.00101, "grad_norm": 0.00752, "time": 0.63008} +{"mode": "train", "epoch": 3, "iter": 13050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.61257, "loss": 0.00105, "grad_norm": 0.00847, "time": 0.63092} +{"mode": "train", "epoch": 3, "iter": 13100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66009, "loss": 0.00099, "grad_norm": 0.00697, "time": 0.63011} +{"mode": "train", "epoch": 3, "iter": 13150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.63267, "loss": 0.00105, "grad_norm": 0.00791, "time": 0.63027} +{"mode": "train", "epoch": 3, "iter": 13200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68955, "loss": 0.00099, "grad_norm": 0.00773, "time": 0.63055} +{"mode": "train", "epoch": 3, "iter": 13250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66393, "loss": 0.00103, "grad_norm": 0.00782, "time": 0.63056} +{"mode": "train", "epoch": 3, "iter": 13300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.65921, "loss": 0.00106, "grad_norm": 0.00733, "time": 0.63021} +{"mode": "train", "epoch": 3, "iter": 13350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.63795, "loss": 0.00104, "grad_norm": 0.00685, "time": 0.63024} +{"mode": "train", "epoch": 3, "iter": 13400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67921, "loss": 0.00098, "grad_norm": 0.00701, "time": 0.6306} +{"mode": "train", "epoch": 3, "iter": 13450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.66766, "loss": 0.00102, "grad_norm": 0.00817, "time": 0.63291} +{"mode": "train", "epoch": 3, "iter": 13500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65763, "loss": 0.00097, "grad_norm": 0.00686, "time": 0.63259} +{"mode": "train", "epoch": 3, "iter": 13550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66984, "loss": 0.00101, "grad_norm": 0.0079, "time": 0.63304} +{"mode": "train", "epoch": 3, "iter": 13600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67123, "loss": 0.001, "grad_norm": 0.00728, "time": 0.63303} +{"mode": "train", "epoch": 3, "iter": 13650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.66616, "loss": 0.001, "grad_norm": 0.00699, "time": 0.63182} +{"mode": "train", "epoch": 3, "iter": 13700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65991, "loss": 0.00099, "grad_norm": 0.00725, "time": 0.63224} +{"mode": "train", "epoch": 3, "iter": 13750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.65649, "loss": 0.00105, "grad_norm": 0.00768, "time": 0.63298} +{"mode": "train", "epoch": 3, "iter": 13800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.62343, "loss": 0.00102, "grad_norm": 0.00638, "time": 0.63166} +{"mode": "train", "epoch": 3, "iter": 13850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.63956, "loss": 0.00101, "grad_norm": 0.0066, "time": 0.63128} +{"mode": "train", "epoch": 3, "iter": 13900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.65839, "loss": 0.00106, "grad_norm": 0.0083, "time": 0.62936} +{"mode": "train", "epoch": 3, "iter": 13950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69362, "loss": 0.00095, "grad_norm": 0.00645, "time": 0.63004} +{"mode": "train", "epoch": 3, "iter": 14000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65311, "loss": 0.00102, "grad_norm": 0.00859, "time": 0.62464} +{"mode": "train", "epoch": 3, "iter": 14050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.67023, "loss": 0.00101, "grad_norm": 0.00768, "time": 0.63046} +{"mode": "train", "epoch": 3, "iter": 14100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.68026, "loss": 0.00099, "grad_norm": 0.00825, "time": 0.63827} +{"mode": "train", "epoch": 3, "iter": 14150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.67909, "loss": 0.00097, "grad_norm": 0.00745, "time": 0.62931} +{"mode": "train", "epoch": 3, "iter": 14200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.6529, "loss": 0.00101, "grad_norm": 0.00772, "time": 0.63107} +{"mode": "train", "epoch": 3, "iter": 14250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66727, "loss": 0.00102, "grad_norm": 0.00718, "time": 0.63096} +{"mode": "train", "epoch": 3, "iter": 14300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.66802, "loss": 0.00096, "grad_norm": 0.00633, "time": 0.62941} +{"mode": "train", "epoch": 3, "iter": 14350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67065, "loss": 0.00097, "grad_norm": 0.00794, "time": 0.62947} +{"mode": "train", "epoch": 3, "iter": 14400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.6412, "loss": 0.001, "grad_norm": 0.00699, "time": 0.6299} +{"mode": "train", "epoch": 3, "iter": 14450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.66714, "loss": 0.00105, "grad_norm": 0.00742, "time": 0.63045} +{"mode": "train", "epoch": 3, "iter": 14500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.62607, "loss": 0.001, "grad_norm": 0.00738, "time": 0.63544} +{"mode": "train", "epoch": 3, "iter": 14550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67588, "loss": 0.00095, "grad_norm": 0.00684, "time": 0.63408} +{"mode": "train", "epoch": 3, "iter": 14600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.67444, "loss": 0.00104, "grad_norm": 0.00742, "time": 0.63589} +{"mode": "train", "epoch": 3, "iter": 14650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00095, "acc_pose": 0.68741, "loss": 0.00095, "grad_norm": 0.00746, "time": 0.6316} +{"mode": "train", "epoch": 3, "iter": 14700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00091, "acc_pose": 0.71384, "loss": 0.00091, "grad_norm": 0.00766, "time": 0.66429} +{"mode": "train", "epoch": 3, "iter": 14750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67171, "loss": 0.00095, "grad_norm": 0.00674, "time": 0.63997} +{"mode": "train", "epoch": 3, "iter": 14800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.6617, "loss": 0.001, "grad_norm": 0.00748, "time": 0.62736} +{"mode": "train", "epoch": 3, "iter": 14850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.65118, "loss": 0.00102, "grad_norm": 0.00734, "time": 0.62675} +{"mode": "train", "epoch": 3, "iter": 14900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64772, "loss": 0.00101, "grad_norm": 0.00771, "time": 0.62749} +{"mode": "train", "epoch": 3, "iter": 14950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.61488, "loss": 0.00102, "grad_norm": 0.00795, "time": 0.62756} +{"mode": "train", "epoch": 3, "iter": 15000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.62741, "loss": 0.00101, "grad_norm": 0.00751, "time": 0.63736} +{"mode": "train", "epoch": 3, "iter": 15050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.66367, "loss": 0.00097, "grad_norm": 0.00721, "time": 0.64021} +{"mode": "train", "epoch": 3, "iter": 15100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66315, "loss": 0.00099, "grad_norm": 0.00728, "time": 0.63241} +{"mode": "train", "epoch": 3, "iter": 15150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.64592, "loss": 0.00104, "grad_norm": 0.00819, "time": 0.63224} +{"mode": "train", "epoch": 3, "iter": 15200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.6588, "loss": 0.00098, "grad_norm": 0.00751, "time": 0.63303} +{"mode": "train", "epoch": 3, "iter": 15250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.65254, "loss": 0.00099, "grad_norm": 0.00715, "time": 0.62672} +{"mode": "train", "epoch": 3, "iter": 15300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.62433, "loss": 0.001, "grad_norm": 0.00712, "time": 0.62533} +{"mode": "train", "epoch": 3, "iter": 15350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.64325, "loss": 0.00105, "grad_norm": 0.0073, "time": 0.67316} +{"mode": "train", "epoch": 3, "iter": 15400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66694, "loss": 0.00102, "grad_norm": 0.00809, "time": 0.63033} +{"mode": "train", "epoch": 3, "iter": 15450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.65332, "loss": 0.00104, "grad_norm": 0.00807, "time": 0.622} +{"mode": "train", "epoch": 3, "iter": 15500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.65435, "loss": 0.00104, "grad_norm": 0.00835, "time": 0.63335} +{"mode": "train", "epoch": 3, "iter": 15550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67765, "loss": 0.00099, "grad_norm": 0.00791, "time": 0.63804} +{"mode": "train", "epoch": 3, "iter": 15600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.62282, "loss": 0.00107, "grad_norm": 0.00695, "time": 0.63832} +{"mode": "train", "epoch": 3, "iter": 15650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.67446, "loss": 0.00096, "grad_norm": 0.00719, "time": 0.63617} +{"mode": "train", "epoch": 3, "iter": 15700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.63459, "loss": 0.001, "grad_norm": 0.00673, "time": 0.63674} +{"mode": "train", "epoch": 3, "iter": 15750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67478, "loss": 0.00095, "grad_norm": 0.00794, "time": 0.63624} +{"mode": "train", "epoch": 3, "iter": 15800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64313, "loss": 0.00101, "grad_norm": 0.00734, "time": 0.63666} +{"mode": "train", "epoch": 3, "iter": 15850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67288, "loss": 0.00099, "grad_norm": 0.00726, "time": 0.63664} +{"mode": "train", "epoch": 3, "iter": 15900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.65124, "loss": 0.00101, "grad_norm": 0.00772, "time": 0.63654} +{"mode": "train", "epoch": 3, "iter": 15950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.66488, "loss": 0.00101, "grad_norm": 0.00759, "time": 0.63652} +{"mode": "train", "epoch": 3, "iter": 16000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64409, "loss": 0.00101, "grad_norm": 0.0069, "time": 0.66596} +{"mode": "train", "epoch": 3, "iter": 16050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.68825, "loss": 0.00093, "grad_norm": 0.00691, "time": 0.6413} +{"mode": "train", "epoch": 3, "iter": 16100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.67317, "loss": 0.00098, "grad_norm": 0.0073, "time": 0.63563} +{"mode": "train", "epoch": 3, "iter": 16150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66878, "loss": 0.00099, "grad_norm": 0.00715, "time": 0.63547} +{"mode": "train", "epoch": 3, "iter": 16200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.64276, "loss": 0.00102, "grad_norm": 0.00751, "time": 0.66341} +{"mode": "train", "epoch": 3, "iter": 16250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67513, "loss": 0.00097, "grad_norm": 0.00717, "time": 0.64003} +{"mode": "train", "epoch": 3, "iter": 16300, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00092, "acc_pose": 0.70758, "loss": 0.00092, "grad_norm": 0.00674, "time": 0.65554} +{"mode": "train", "epoch": 3, "iter": 16350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65256, "loss": 0.001, "grad_norm": 0.0071, "time": 0.63073} +{"mode": "train", "epoch": 3, "iter": 16400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65021, "loss": 0.00097, "grad_norm": 0.00801, "time": 0.62753} +{"mode": "train", "epoch": 3, "iter": 16450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.62659, "loss": 0.00103, "grad_norm": 0.00711, "time": 0.68472} +{"mode": "train", "epoch": 3, "iter": 16500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66171, "loss": 0.00102, "grad_norm": 0.00675, "time": 0.6409} +{"mode": "train", "epoch": 3, "iter": 16550, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00101, "acc_pose": 0.65838, "loss": 0.00101, "grad_norm": 0.00743, "time": 0.6251} +{"mode": "train", "epoch": 3, "iter": 16600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.64464, "loss": 0.00104, "grad_norm": 0.00784, "time": 0.65486} +{"mode": "train", "epoch": 3, "iter": 16650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.67436, "loss": 0.00103, "grad_norm": 0.00804, "time": 0.64026} +{"mode": "train", "epoch": 3, "iter": 16700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.67566, "loss": 0.001, "grad_norm": 0.00751, "time": 0.63749} +{"mode": "train", "epoch": 3, "iter": 16750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66876, "loss": 0.00099, "grad_norm": 0.00695, "time": 0.63238} +{"mode": "train", "epoch": 3, "iter": 16800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.66859, "loss": 0.00098, "grad_norm": 0.00644, "time": 0.65298} +{"mode": "train", "epoch": 3, "iter": 16850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.63532, "loss": 0.00103, "grad_norm": 0.00764, "time": 0.6429} +{"mode": "train", "epoch": 3, "iter": 16900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00094, "acc_pose": 0.67823, "loss": 0.00094, "grad_norm": 0.00633, "time": 0.63355} +{"mode": "train", "epoch": 3, "iter": 16950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.6518, "loss": 0.00102, "grad_norm": 0.00829, "time": 0.66465} +{"mode": "train", "epoch": 3, "iter": 17000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.66278, "loss": 0.00105, "grad_norm": 0.00782, "time": 0.64911} +{"mode": "train", "epoch": 3, "iter": 17050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00104, "acc_pose": 0.6214, "loss": 0.00104, "grad_norm": 0.00633, "time": 0.63138} +{"mode": "train", "epoch": 3, "iter": 17100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.67082, "loss": 0.00102, "grad_norm": 0.00744, "time": 0.64789} +{"mode": "train", "epoch": 3, "iter": 17150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.64998, "loss": 0.00103, "grad_norm": 0.0081, "time": 0.64669} +{"mode": "train", "epoch": 3, "iter": 17200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.66111, "loss": 0.00106, "grad_norm": 0.0087, "time": 0.63199} +{"mode": "train", "epoch": 3, "iter": 17250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69346, "loss": 0.00095, "grad_norm": 0.00666, "time": 0.63192} +{"mode": "train", "epoch": 3, "iter": 17300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.62926, "loss": 0.00103, "grad_norm": 0.00685, "time": 0.63293} +{"mode": "train", "epoch": 3, "iter": 17350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00093, "acc_pose": 0.66151, "loss": 0.00093, "grad_norm": 0.00727, "time": 0.66755} +{"mode": "train", "epoch": 3, "iter": 17400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.68698, "loss": 0.00095, "grad_norm": 0.00622, "time": 0.63748} +{"mode": "train", "epoch": 3, "iter": 17450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00101, "acc_pose": 0.66208, "loss": 0.00101, "grad_norm": 0.00736, "time": 0.62942} +{"mode": "train", "epoch": 3, "iter": 17500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.66604, "loss": 0.00099, "grad_norm": 0.00757, "time": 0.64139} +{"mode": "train", "epoch": 3, "iter": 17550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.65347, "loss": 0.00105, "grad_norm": 0.00786, "time": 0.64776} +{"mode": "train", "epoch": 3, "iter": 17600, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00096, "acc_pose": 0.66884, "loss": 0.00096, "grad_norm": 0.00635, "time": 0.63843} +{"mode": "train", "epoch": 3, "iter": 17650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.64343, "loss": 0.00101, "grad_norm": 0.00681, "time": 0.63982} +{"mode": "train", "epoch": 3, "iter": 17700, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00095, "acc_pose": 0.6693, "loss": 0.00095, "grad_norm": 0.00782, "time": 0.63958} +{"mode": "train", "epoch": 3, "iter": 17750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.69244, "loss": 0.00095, "grad_norm": 0.00708, "time": 0.63891} +{"mode": "train", "epoch": 3, "iter": 17800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.64235, "loss": 0.00103, "grad_norm": 0.00765, "time": 0.62964} +{"mode": "train", "epoch": 3, "iter": 17850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.62597, "loss": 0.00101, "grad_norm": 0.00624, "time": 0.64206} +{"mode": "train", "epoch": 3, "iter": 17900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00108, "acc_pose": 0.63512, "loss": 0.00108, "grad_norm": 0.00879, "time": 0.64492} +{"mode": "train", "epoch": 3, "iter": 17950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65347, "loss": 0.00097, "grad_norm": 0.00723, "time": 0.6326} +{"mode": "train", "epoch": 3, "iter": 18000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66227, "loss": 0.00103, "grad_norm": 0.0074, "time": 0.6585} +{"mode": "train", "epoch": 3, "iter": 18050, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.64943, "loss": 0.00105, "grad_norm": 0.0076, "time": 0.63717} +{"mode": "train", "epoch": 3, "iter": 18100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.65933, "loss": 0.001, "grad_norm": 0.0076, "time": 0.63037} +{"mode": "train", "epoch": 3, "iter": 18150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65669, "loss": 0.00097, "grad_norm": 0.00703, "time": 0.63637} +{"mode": "train", "epoch": 3, "iter": 18200, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.63987, "loss": 0.00104, "grad_norm": 0.00775, "time": 0.65441} +{"mode": "train", "epoch": 3, "iter": 18250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.67183, "loss": 0.00099, "grad_norm": 0.0085, "time": 0.63967} +{"mode": "train", "epoch": 3, "iter": 18300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.6295, "loss": 0.00103, "grad_norm": 0.00843, "time": 0.63762} +{"mode": "train", "epoch": 3, "iter": 18350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.6707, "loss": 0.00101, "grad_norm": 0.00712, "time": 0.63545} +{"mode": "train", "epoch": 3, "iter": 18400, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.67632, "loss": 0.00097, "grad_norm": 0.00871, "time": 0.63558} +{"mode": "train", "epoch": 3, "iter": 18450, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00099, "acc_pose": 0.67782, "loss": 0.00099, "grad_norm": 0.00779, "time": 0.63533} +{"mode": "train", "epoch": 3, "iter": 18500, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6763, "loss": 0.00099, "grad_norm": 0.0079, "time": 0.64129} +{"mode": "train", "epoch": 3, "iter": 18550, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.665, "loss": 0.00101, "grad_norm": 0.00656, "time": 0.66306} +{"mode": "train", "epoch": 3, "iter": 18600, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.64446, "loss": 0.00098, "grad_norm": 0.00699, "time": 0.63563} +{"mode": "train", "epoch": 3, "iter": 18650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00101, "acc_pose": 0.6216, "loss": 0.00101, "grad_norm": 0.00619, "time": 0.66067} +{"mode": "train", "epoch": 3, "iter": 18700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67997, "loss": 0.00095, "grad_norm": 0.0073, "time": 0.63927} +{"mode": "train", "epoch": 3, "iter": 18750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00097, "acc_pose": 0.65751, "loss": 0.00097, "grad_norm": 0.0067, "time": 0.62336} +{"mode": "train", "epoch": 3, "iter": 18800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65789, "loss": 0.00103, "grad_norm": 0.0092, "time": 0.67471} +{"mode": "train", "epoch": 3, "iter": 18850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.66112, "loss": 0.00103, "grad_norm": 0.00762, "time": 0.64106} +{"mode": "train", "epoch": 3, "iter": 18900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00102, "acc_pose": 0.65485, "loss": 0.00102, "grad_norm": 0.00629, "time": 0.63416} +{"mode": "train", "epoch": 3, "iter": 18950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00104, "acc_pose": 0.63354, "loss": 0.00104, "grad_norm": 0.00761, "time": 0.62647} +{"mode": "train", "epoch": 3, "iter": 19000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.65405, "loss": 0.00103, "grad_norm": 0.00758, "time": 0.62659} +{"mode": "train", "epoch": 3, "iter": 19050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.66594, "loss": 0.00098, "grad_norm": 0.00782, "time": 0.63529} +{"mode": "train", "epoch": 3, "iter": 19100, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.63856, "loss": 0.00098, "grad_norm": 0.00736, "time": 0.64126} +{"mode": "train", "epoch": 3, "iter": 19150, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.6756, "loss": 0.00095, "grad_norm": 0.00672, "time": 0.63309} +{"mode": "train", "epoch": 3, "iter": 19200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00107, "acc_pose": 0.66507, "loss": 0.00107, "grad_norm": 0.00745, "time": 0.63155} +{"mode": "train", "epoch": 3, "iter": 19250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.67369, "loss": 0.00105, "grad_norm": 0.00775, "time": 0.6315} +{"mode": "train", "epoch": 3, "iter": 19300, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.64008, "loss": 0.00099, "grad_norm": 0.0073, "time": 0.63133} +{"mode": "train", "epoch": 3, "iter": 19350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.67676, "loss": 0.00103, "grad_norm": 0.0077, "time": 0.63079} +{"mode": "train", "epoch": 3, "iter": 19400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00107, "acc_pose": 0.65271, "loss": 0.00107, "grad_norm": 0.00756, "time": 0.63101} +{"mode": "train", "epoch": 3, "iter": 19450, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6503, "loss": 0.00099, "grad_norm": 0.008, "time": 0.63161} +{"mode": "train", "epoch": 3, "iter": 19500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.64644, "loss": 0.00104, "grad_norm": 0.00805, "time": 0.63205} +{"mode": "train", "epoch": 3, "iter": 19550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00104, "acc_pose": 0.64701, "loss": 0.00104, "grad_norm": 0.00747, "time": 0.63101} +{"mode": "train", "epoch": 3, "iter": 19600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.66064, "loss": 0.00097, "grad_norm": 0.0078, "time": 0.6321} +{"mode": "train", "epoch": 3, "iter": 19650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.66722, "loss": 0.00101, "grad_norm": 0.00701, "time": 0.63181} +{"mode": "train", "epoch": 3, "iter": 19700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00098, "acc_pose": 0.65425, "loss": 0.00098, "grad_norm": 0.00707, "time": 0.63182} +{"mode": "train", "epoch": 3, "iter": 19750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.6402, "loss": 0.001, "grad_norm": 0.00899, "time": 0.6314} +{"mode": "train", "epoch": 3, "iter": 19800, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00107, "acc_pose": 0.6519, "loss": 0.00107, "grad_norm": 0.00741, "time": 0.63202} +{"mode": "train", "epoch": 3, "iter": 19850, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.67422, "loss": 0.00099, "grad_norm": 0.00697, "time": 0.63524} +{"mode": "train", "epoch": 3, "iter": 19900, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00099, "acc_pose": 0.63395, "loss": 0.00099, "grad_norm": 0.00775, "time": 0.63309} +{"mode": "train", "epoch": 3, "iter": 19950, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00099, "acc_pose": 0.6366, "loss": 0.00099, "grad_norm": 0.00662, "time": 0.62619} +{"mode": "train", "epoch": 3, "iter": 20000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.63576, "loss": 0.00103, "grad_norm": 0.00763, "time": 0.67559} +{"mode": "train", "epoch": 3, "iter": 20050, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00101, "acc_pose": 0.64267, "loss": 0.00101, "grad_norm": 0.00762, "time": 0.62845} +{"mode": "train", "epoch": 3, "iter": 20100, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00109, "acc_pose": 0.66169, "loss": 0.00109, "grad_norm": 0.00812, "time": 0.62636} +{"mode": "train", "epoch": 3, "iter": 20150, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.65361, "loss": 0.001, "grad_norm": 0.00737, "time": 0.63417} +{"mode": "train", "epoch": 3, "iter": 20200, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64982, "loss": 0.001, "grad_norm": 0.00723, "time": 0.63529} +{"mode": "train", "epoch": 3, "iter": 20250, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.001, "acc_pose": 0.64695, "loss": 0.001, "grad_norm": 0.008, "time": 0.63283} +{"mode": "train", "epoch": 3, "iter": 20300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00105, "acc_pose": 0.64263, "loss": 0.00105, "grad_norm": 0.00756, "time": 0.63249} +{"mode": "train", "epoch": 3, "iter": 20350, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.65937, "loss": 0.00105, "grad_norm": 0.00733, "time": 0.64032} +{"mode": "train", "epoch": 3, "iter": 20400, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.64252, "loss": 0.00105, "grad_norm": 0.00917, "time": 0.63948} +{"mode": "train", "epoch": 3, "iter": 20450, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00108, "acc_pose": 0.6294, "loss": 0.00108, "grad_norm": 0.00779, "time": 0.63789} +{"mode": "train", "epoch": 3, "iter": 20500, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.66432, "loss": 0.00097, "grad_norm": 0.00775, "time": 0.63836} +{"mode": "train", "epoch": 3, "iter": 20550, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.65689, "loss": 0.001, "grad_norm": 0.00778, "time": 0.63258} +{"mode": "train", "epoch": 3, "iter": 20600, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65153, "loss": 0.00103, "grad_norm": 0.00645, "time": 0.62809} +{"mode": "train", "epoch": 3, "iter": 20650, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00103, "acc_pose": 0.66337, "loss": 0.00103, "grad_norm": 0.00766, "time": 0.66734} +{"mode": "train", "epoch": 3, "iter": 20700, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00095, "acc_pose": 0.67846, "loss": 0.00095, "grad_norm": 0.00772, "time": 0.63777} +{"mode": "train", "epoch": 3, "iter": 20750, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00096, "acc_pose": 0.6631, "loss": 0.00096, "grad_norm": 0.0069, "time": 0.62764} +{"mode": "train", "epoch": 3, "iter": 20800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00097, "acc_pose": 0.64034, "loss": 0.00097, "grad_norm": 0.00757, "time": 0.6286} +{"mode": "train", "epoch": 3, "iter": 20850, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00106, "acc_pose": 0.63783, "loss": 0.00106, "grad_norm": 0.00752, "time": 0.66283} +{"mode": "train", "epoch": 3, "iter": 20900, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00098, "acc_pose": 0.63024, "loss": 0.00098, "grad_norm": 0.00672, "time": 0.63041} +{"mode": "train", "epoch": 3, "iter": 20950, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.64321, "loss": 0.001, "grad_norm": 0.00717, "time": 0.63029} +{"mode": "train", "epoch": 3, "iter": 21000, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66668, "loss": 0.00102, "grad_norm": 0.00772, "time": 0.63012} +{"mode": "train", "epoch": 3, "iter": 21050, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.001, "acc_pose": 0.65684, "loss": 0.001, "grad_norm": 0.00693, "time": 0.6377} +{"mode": "train", "epoch": 3, "iter": 21100, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00097, "acc_pose": 0.63135, "loss": 0.00097, "grad_norm": 0.00637, "time": 0.64005} +{"mode": "train", "epoch": 3, "iter": 21150, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.62743, "loss": 0.00103, "grad_norm": 0.00643, "time": 0.62775} +{"mode": "train", "epoch": 3, "iter": 21200, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00106, "acc_pose": 0.63731, "loss": 0.00106, "grad_norm": 0.00915, "time": 0.62984} +{"mode": "train", "epoch": 3, "iter": 21250, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00103, "acc_pose": 0.65306, "loss": 0.00103, "grad_norm": 0.0078, "time": 0.6329} +{"mode": "train", "epoch": 3, "iter": 21300, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00108, "acc_pose": 0.60664, "loss": 0.00108, "grad_norm": 0.00854, "time": 0.63177} +{"mode": "train", "epoch": 3, "iter": 21350, "lr": 1e-05, "memory": 17294, "data_time": 0.00017, "heatmap_loss": 0.00102, "acc_pose": 0.66475, "loss": 0.00102, "grad_norm": 0.00759, "time": 0.63255} +{"mode": "train", "epoch": 3, "iter": 21400, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00102, "acc_pose": 0.65857, "loss": 0.00102, "grad_norm": 0.00871, "time": 0.63409} +{"mode": "train", "epoch": 3, "iter": 21450, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00103, "acc_pose": 0.65447, "loss": 0.00103, "grad_norm": 0.00716, "time": 0.66108} +{"mode": "train", "epoch": 3, "iter": 21500, "lr": 1e-05, "memory": 17294, "data_time": 0.00021, "heatmap_loss": 0.00101, "acc_pose": 0.66119, "loss": 0.00101, "grad_norm": 0.00785, "time": 0.63199} +{"mode": "train", "epoch": 3, "iter": 21550, "lr": 1e-05, "memory": 17294, "data_time": 0.00018, "heatmap_loss": 0.00104, "acc_pose": 0.64831, "loss": 0.00104, "grad_norm": 0.00932, "time": 0.63482} +{"mode": "train", "epoch": 3, "iter": 21600, "lr": 1e-05, "memory": 17294, "data_time": 0.00019, "heatmap_loss": 0.00103, "acc_pose": 0.66165, "loss": 0.00103, "grad_norm": 0.00663, "time": 0.67404} +{"mode": "train", "epoch": 3, "iter": 21650, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00105, "acc_pose": 0.63348, "loss": 0.00105, "grad_norm": 0.00824, "time": 0.63234} +{"mode": "train", "epoch": 3, "iter": 21700, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.001, "acc_pose": 0.66647, "loss": 0.001, "grad_norm": 0.00827, "time": 0.64808} +{"mode": "train", "epoch": 3, "iter": 21750, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.65016, "loss": 0.00103, "grad_norm": 0.00855, "time": 0.63926} +{"mode": "train", "epoch": 3, "iter": 21800, "lr": 1e-05, "memory": 17294, "data_time": 0.00016, "heatmap_loss": 0.00103, "acc_pose": 0.63652, "loss": 0.00103, "grad_norm": 0.00828, "time": 0.63303} +{"mode": "train", "epoch": 3, "iter": 21850, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.001, "acc_pose": 0.65668, "loss": 0.001, "grad_norm": 0.00698, "time": 0.66228} +{"mode": "train", "epoch": 3, "iter": 21900, "lr": 1e-05, "memory": 17294, "data_time": 0.00015, "heatmap_loss": 0.00106, "acc_pose": 0.65327, "loss": 0.00106, "grad_norm": 0.00738, "time": 0.63531} + \ No newline at end of file diff --git a/遇到的问题.txt b/遇到的问题.txt new file mode 100644 index 0000000..e8b7d29 --- /dev/null +++ b/遇到的问题.txt @@ -0,0 +1 @@ +安装环境时的问题:由于setuptools版本过高,导致算法使用的安装方式已经被弃用,建议选择重新安装小于60的版本 \ No newline at end of file