You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

187 lines
7.9 KiB

import numpy as np
class ChunkedGenerator:
def __init__(self, batch_size, cameras, poses_3d, poses_2d,
chunk_length=1, pad=0, causal_shift=0,
shuffle=False, random_seed=1234,
augment=False, reverse_aug= False,kps_left=None, kps_right=None, joints_left=None, joints_right=None,
endless=False, out_all = False, MAE=False, tds=1):
assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
assert cameras is None or len(cameras) == len(poses_2d)
pairs = []
self.saved_index = {}
start_index = 0
for key in poses_2d.keys():
assert poses_3d is None or poses_3d[key].shape[0] == poses_3d[key].shape[0]
n_chunks = (poses_2d[key].shape[0] + chunk_length - 1) // chunk_length
offset = (n_chunks * chunk_length - poses_2d[key].shape[0]) // 2
bounds = np.arange(n_chunks + 1) * chunk_length - offset
augment_vector = np.full(len(bounds - 1), False, dtype=bool)
reverse_augment_vector = np.full(len(bounds - 1), False, dtype=bool)
keys = np.tile(np.array(key).reshape([1,3]),(len(bounds - 1),1))
pairs += list(zip(keys, bounds[:-1], bounds[1:], augment_vector,reverse_augment_vector))
if reverse_aug:
pairs += list(zip(keys, bounds[:-1], bounds[1:], augment_vector, ~reverse_augment_vector))
if augment:
if reverse_aug:
pairs += list(zip(keys, bounds[:-1], bounds[1:], ~augment_vector,~reverse_augment_vector))
else:
pairs += list(zip(keys, bounds[:-1], bounds[1:], ~augment_vector, reverse_augment_vector))
end_index = start_index + poses_3d[key].shape[0]
self.saved_index[key] = [start_index,end_index]
start_index = start_index + poses_3d[key].shape[0]
if cameras is not None:
self.batch_cam = np.empty((batch_size, cameras[key].shape[-1]))
if poses_3d is not None:
self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[key].shape[-2], poses_3d[key].shape[-1]))
self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[key].shape[-2], poses_2d[key].shape[-1]))
self.num_batches = (len(pairs) + batch_size - 1) // batch_size
self.batch_size = batch_size
self.random = np.random.RandomState(random_seed)
self.pairs = pairs
self.shuffle = shuffle
self.pad = pad
self.causal_shift = causal_shift
self.endless = endless
self.state = None
self.cameras = cameras
if cameras is not None:
self.cameras = cameras
self.poses_3d = poses_3d
self.poses_2d = poses_2d
self.augment = augment
self.kps_left = kps_left
self.kps_right = kps_right
self.joints_left = joints_left
self.joints_right = joints_right
self.out_all = out_all
self.MAE = MAE
self.tds = tds
self.chunk_length = chunk_length
def num_frames(self):
return self.num_batches * self.batch_size
def random_state(self):
return self.random
def set_random_state(self, random):
self.random = random
def augment_enabled(self):
return self.augment
def next_pairs(self):
if self.state is None:
if self.shuffle:
pairs = self.random.permutation(self.pairs)
else:
pairs = self.pairs
return 0, pairs
else:
return self.state
def get_batch(self, seq_i, start_3d, end_3d, flip, reverse):
subject,action,cam_index = seq_i
seq_name = (subject,action,int(cam_index))
if self.chunk_length == 1:
start_2d = start_3d - self.pad * self.tds - self.causal_shift
end_2d = end_3d + self.pad * self.tds - self.causal_shift
else:
mid = end_3d - self.pad
start_2d = mid - self.pad * self.tds - self.causal_shift-1
end_2d = mid + self.pad * self.tds - self.causal_shift
seq_2d = self.poses_2d[seq_name].copy()
low_2d = max(start_2d, 0)
high_2d = min(end_2d, seq_2d.shape[0])
pad_left_2d = low_2d - start_2d
pad_right_2d = end_2d - high_2d
if pad_left_2d != 0:
data_pad = np.repeat(seq_2d[0:1],pad_left_2d,axis=0)
new_data = np.concatenate((data_pad, seq_2d[low_2d:high_2d]), axis=0)
self.batch_2d = new_data[::self.tds]
#self.batch_2d = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge')
elif pad_right_2d != 0:
data_pad = np.repeat(seq_2d[seq_2d.shape[0]-1:seq_2d.shape[0]], pad_right_2d, axis=0)
new_data = np.concatenate((seq_2d[low_2d:high_2d], data_pad), axis=0)
self.batch_2d = new_data[::self.tds]
#self.batch_2d = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge')
else:
self.batch_2d = seq_2d[low_2d:high_2d:self.tds]
if flip:
self.batch_2d[ :, :, 0] *= -1
self.batch_2d[ :, self.kps_left + self.kps_right] = self.batch_2d[ :,
self.kps_right + self.kps_left]
if reverse:
self.batch_2d = self.batch_2d[::-1].copy()
if not self.MAE:
if self.poses_3d is not None:
seq_3d = self.poses_3d[seq_name].copy()
if self.out_all:
low_3d = low_2d
high_3d = high_2d
pad_left_3d = pad_left_2d
pad_right_3d = pad_right_2d
else:
low_3d = max(start_3d, 0)
high_3d = min(end_3d, seq_3d.shape[0])
pad_left_3d = low_3d - start_3d
pad_right_3d = end_3d - high_3d
if pad_left_3d != 0:
data_pad = np.repeat(seq_3d[0:1], pad_left_3d, axis=0)
new_data = np.concatenate((data_pad, seq_3d[low_3d:high_3d]), axis=0)
self.batch_3d = new_data[::self.tds]
elif pad_right_3d != 0:
data_pad = np.repeat(seq_3d[seq_3d.shape[0] - 1:seq_3d.shape[0]], pad_right_3d, axis=0)
new_data = np.concatenate((seq_3d[low_3d:high_3d], data_pad), axis=0)
self.batch_3d = new_data[::self.tds]
# self.batch_3d = np.pad(seq_3d[low_3d:high_3d],
# ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge')
else:
self.batch_3d = seq_3d[low_3d:high_3d:self.tds]
if flip:
self.batch_3d[ :, :, 0] *= -1
self.batch_3d[ :, self.joints_left + self.joints_right] = \
self.batch_3d[ :, self.joints_right + self.joints_left]
if reverse:
self.batch_3d = self.batch_3d[::-1].copy()
if self.cameras is not None:
self.batch_cam = self.cameras[seq_name].copy()
if flip:
self.batch_cam[ 2] *= -1
self.batch_cam[ 7] *= -1
if self.MAE:
return self.batch_cam, self.batch_2d.copy(), action, subject, int(cam_index)
if self.poses_3d is None and self.cameras is None:
return None, None, self.batch_2d.copy(), action, subject, int(cam_index)
elif self.poses_3d is not None and self.cameras is None:
return np.zeros(9), self.batch_3d.copy(), self.batch_2d.copy(),action, subject, int(cam_index)
elif self.poses_3d is None:
return self.batch_cam, None, self.batch_2d.copy(),action, subject, int(cam_index)
else:
return self.batch_cam, self.batch_3d.copy(), self.batch_2d.copy(),action, subject, int(cam_index)