# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation, writers from mpl_toolkits.mplot3d import Axes3D import numpy as np import subprocess as sp def get_resolution(filename): command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=width,height', '-of', 'csv=p=0', filename] with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: for line in pipe.stdout: w, h = line.decode().strip().split(',') return int(w), int(h) def get_fps(filename): command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=r_frame_rate', '-of', 'csv=p=0', filename] with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: for line in pipe.stdout: a, b = line.decode().strip().split('/') return int(a) / int(b) def read_video(filename, skip=0, limit=-1): w, h = get_resolution(filename) command = ['ffmpeg', '-i', filename, '-f', 'image2pipe', '-pix_fmt', 'rgb24', '-vsync', '0', '-vcodec', 'rawvideo', '-'] i = 0 with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: while True: data = pipe.stdout.read(w * h * 3) if not data: break i += 1 if i > limit and limit != -1: continue if i > skip: yield np.frombuffer(data, dtype='uint8').reshape((h, w, 3)) def downsample_tensor(X, factor): length = X.shape[0] // factor * factor return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1) def render_animation(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0, viz_action="", viz_subject=""): """ TODO Render an animation. The supported output modes are: -- 'interactive': display an interactive figure (also works on notebooks if associated with %matplotlib inline) -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). -- 'filename.gif': render and export the animation a gif file (requires imagemagick). """ plt.ioff() fig = plt.figure(figsize=(size * (1 + len(poses)), size)) ax_in = fig.add_subplot(1, 1 + len(poses), 1) ax_in.get_xaxis().set_visible(False) ax_in.get_yaxis().set_visible(False) ax_in.set_axis_off() ax_in.set_title('Input') ax_3d = [] lines_3d = [] trajectories = [] radius = 1.7 for index, (title, data) in enumerate(poses.items()): ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') ax.view_init(elev=15., azim=azim+90.) ax.set_xlim3d([-radius / 2, radius / 2]) ax.set_zlim3d([0, radius]) ax.set_ylim3d([-radius / 2, radius / 2]) # ax.set_aspect('equal') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.dist = 7.5 ax.set_title(title) # , pad=35 ax_3d.append(ax) lines_3d.append([]) trajectories.append(data[:, 0, [0, 1]]) poses = list(poses.values()) # Decode video if input_video_path is None: # Black background all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') else: # Load video using ffmpeg all_frames = [] for f in read_video(input_video_path, skip=input_video_skip, limit=limit): all_frames.append(f) effective_length = min(keypoints.shape[0], len(all_frames)) all_frames = all_frames[:effective_length] keypoints = keypoints[input_video_skip:] # todo remove for idx in range(len(poses)): poses[idx] = poses[idx][input_video_skip:] if fps is None: fps = get_fps(input_video_path) if downsample > 1: keypoints = downsample_tensor(keypoints, downsample) all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') for idx in range(len(poses)): poses[idx] = downsample_tensor(poses[idx], downsample) trajectories[idx] = downsample_tensor(trajectories[idx], downsample) fps /= downsample initialized = False image = None lines = [] points = None if limit < 1: limit = len(all_frames) else: limit = min(limit, len(all_frames)) parents = skeleton.parents() def update_video(i): nonlocal initialized, image, lines, points for n, ax in enumerate(ax_3d): ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]]) ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]]) # Update 2D poses # joints_right_2d = keypoints_metadata['keypoints_symmetry'][1] # joints_left_2d = keypoints_metadata['keypoints_symmetry'][0] joints_left_2d = [4, 5, 6, 11, 12, 13] joints_right_2d = [1, 2, 3, 14, 15, 16] colors_2d = np.full(keypoints.shape[1], 'midnightblue', dtype="object") colors_2d[joints_right_2d] = 'yellowgreen' colors_2d[joints_left_2d] = 'midnightblue' if not initialized: image = ax_in.imshow(all_frames[i], aspect='equal') for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: # Draw skeleton only if keypoints match (otherwise we don't have the parents definition) lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color=colors_2d[j])) col = 'red' if j in skeleton.joints_right() else 'black' for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], [pos[j, 1], pos[j_parent, 1]], [pos[j, 2], pos[j_parent, 2]], zdir='z', c=colors_2d[j])) # points = ax_in.scatter(*keypoints[i].T, 0, zorder=10) initialized = True else: image.set_data(all_frames[i]) for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]]) for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n][j - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]]) lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') # points.set_offsets(keypoints[i]) print('{}/{} '.format(i, limit), end='\r') fig.tight_layout() anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False) if output.endswith('.mp4'): Writer = writers['ffmpeg'] writer = Writer(fps=fps, metadata={}, bitrate=bitrate) anim.save(output, writer=writer) elif output.endswith('.gif'): anim.save(output, dpi=80, writer='imagemagick') else: raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') plt.close() def render_animation_temp(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0, viz_action="", viz_subject=""): """ TODO Render an animation. The supported output modes are: -- 'interactive': display an interactive figure (also works on notebooks if associated with %matplotlib inline) -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). -- 'filename.gif': render and export the animation a gif file (requires imagemagick). """ output = output + "_" + viz_subject + "_" + viz_action + ".mp4" print(output) plt.ioff() fig = plt.figure(figsize=(size * (1 + len(poses)), size)) ax_in = fig.add_subplot(1, 1 + len(poses), 1) ax_in.get_xaxis().set_visible(False) ax_in.get_yaxis().set_visible(False) ax_in.set_axis_off() ax_in.set_title('Input') ax_3d = [] lines_3d = [] trajectories = [] radius = 1.7 for index, (title, data) in enumerate(poses.items()): ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') ax.view_init(elev=15., azim=azim) ax.set_xlim3d([-radius / 2, radius / 2]) ax.set_zlim3d([0, radius]) ax.set_ylim3d([-radius / 2, radius / 2]) # ax.set_aspect('equal') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.dist = 7.5 ax.set_title(title) # , pad=35 ax_3d.append(ax) lines_3d.append([]) trajectories.append(data[:, 0, [0, 1]]) poses = list(poses.values()) # Decode video if input_video_path is None: # Black background all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') else: # Load video using ffmpeg all_frames = [] for f in read_video(input_video_path, skip=input_video_skip, limit=limit): all_frames.append(f) effective_length = min(keypoints.shape[0], len(all_frames)) all_frames = all_frames[:effective_length] keypoints = keypoints[input_video_skip:] # todo remove for idx in range(len(poses)): poses[idx] = poses[idx][input_video_skip:] if fps is None: fps = get_fps(input_video_path) if downsample > 1: keypoints = downsample_tensor(keypoints, downsample) all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') for idx in range(len(poses)): poses[idx] = downsample_tensor(poses[idx], downsample) trajectories[idx] = downsample_tensor(trajectories[idx], downsample) fps /= downsample initialized = False image = None lines = [] points = None if limit < 1: limit = len(all_frames) else: limit = min(limit, len(all_frames)) parents = skeleton.parents() def update_video(i): nonlocal initialized, image, lines, points for n, ax in enumerate(ax_3d): ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]]) ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]]) # Update 2D poses joints_right_2d = keypoints_metadata['keypoints_symmetry'][1] joints_left_2d = keypoints_metadata['keypoints_symmetry'][0] colors_2d = np.full(keypoints.shape[1], 'peru', dtype="object") colors_2d[joints_right_2d] = 'darkseagreen' colors_2d[joints_left_2d] = 'slateblue' if not initialized: image = ax_in.imshow(all_frames[i], aspect='equal') for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: # Draw skeleton only if keypoints match (otherwise we don't have the parents definition) lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color=colors_2d[j])) col = 'red' if j in skeleton.joints_right() else 'black' for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], [pos[j, 1], pos[j_parent, 1]], [pos[j, 2], pos[j_parent, 2]], zdir='z', c=colors_2d[j])) points = ax_in.scatter(*keypoints[i].T, 10, color=colors_2d, edgecolors='white', zorder=10) initialized = True else: image.set_data(all_frames[i]) for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]]) for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n][j - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]]) lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') points.set_offsets(keypoints[i]) print('{}/{} '.format(i, limit), end='\r') fig.tight_layout() anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False) if output.endswith('.mp4'): Writer = writers['ffmpeg'] writer = Writer(fps=fps, metadata={}, bitrate=bitrate) anim.save(output, writer=writer) elif output.endswith('.gif'): anim.save(output, dpi=80, writer='imagemagick') else: raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') plt.close() def render_animation_T(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0, viz_action="", viz_subject=""): """ TODO Render an animation. The supported output modes are: -- 'interactive': display an interactive figure (also works on notebooks if associated with %matplotlib inline) -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). -- 'filename.gif': render and export the animation a gif file (requires imagemagick). """ output = output + "_" + viz_subject + "_" + viz_action + ".mp4" print(output) plt.ioff() fig = plt.figure(figsize=(size * (1 + len(poses)), size)) ax_in = fig.add_subplot(1, 1 + len(poses), 1) ax_in.get_xaxis().set_visible(False) ax_in.get_yaxis().set_visible(False) ax_in.set_axis_off() ax_in.set_title('Input') ax_3d = [] lines_3d = [] trajectories = [] radius = 1.7 for index, (title, data) in enumerate(poses.items()): ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') ax.view_init(elev=15., azim=azim) ax.set_xlim3d([-radius / 2, radius / 2]) ax.set_zlim3d([0, radius]) ax.set_ylim3d([-radius / 2, radius / 2]) # ax.set_aspect('equal') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.dist = 7.5 ax.set_title(title) # , pad=35 ax_3d.append(ax) lines_3d.append([]) trajectories.append(data[:, 0, [0, 1]]) poses = list(poses.values()) # Decode video if input_video_path is None: # Black background all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') else: # Load video using ffmpeg all_frames = [] for f in read_video(input_video_path, skip=input_video_skip, limit=limit): all_frames.append(f) effective_length = min(keypoints.shape[0], len(all_frames)) all_frames = all_frames[:effective_length] keypoints = keypoints[input_video_skip:] # todo remove for idx in range(len(poses)): poses[idx] = poses[idx][input_video_skip:] if fps is None: fps = get_fps(input_video_path) if downsample > 1: keypoints = downsample_tensor(keypoints, downsample) all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') for idx in range(len(poses)): poses[idx] = downsample_tensor(poses[idx], downsample) trajectories[idx] = downsample_tensor(trajectories[idx], downsample) fps /= downsample initialized = False image = None lines = [] points = None if limit < 1: limit = len(all_frames) else: limit = min(limit, len(all_frames)) parents = skeleton.parents() def update_video(i): nonlocal initialized, image, lines, points for n, ax in enumerate(ax_3d): ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]]) ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]]) # Update 2D poses joints_right_2d = keypoints_metadata['keypoints_symmetry'][1] joints_left_2d = keypoints_metadata['keypoints_symmetry'][0] colors_2d = np.full(keypoints.shape[1], 'peru', dtype="object") colors_2d[joints_right_2d] = 'darkseagreen' colors_2d[joints_left_2d] = 'slateblue' if not initialized: image = ax_in.imshow(all_frames[i], aspect='equal') for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: # Draw skeleton only if keypoints match (otherwise we don't have the parents definition) lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color=colors_2d[j])) col = 'red' if j in skeleton.joints_right() else 'black' for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], [pos[j, 1], pos[j_parent, 1]], [pos[j, 2], pos[j_parent, 2]], zdir='z', c=colors_2d[j])) # points = ax_in.scatter(*keypoints[i].T, 0, zorder=10) initialized = True else: image.set_data(all_frames[i]) for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]]) for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n][j - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]]) lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') # points.set_offsets(keypoints[i]) print('{}/{} '.format(i, limit), end='\r') fig.tight_layout() anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False) if output.endswith('.mp4'): Writer = writers['ffmpeg'] writer = Writer(fps=fps, metadata={}, bitrate=bitrate) anim.save(output, writer=writer) elif output.endswith('.gif'): anim.save(output, dpi=80, writer='imagemagick') else: raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') plt.close() def render_animation_humaneva(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0, viz_action="", viz_subject=""): """ TODO Render an animation. The supported output modes are: -- 'interactive': display an interactive figure (also works on notebooks if associated with %matplotlib inline) -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). -- 'filename.gif': render and export the animation a gif file (requires imagemagick). """ # output = output + "_" + viz_subject + "_" + viz_action + ".mp4" # print(output) plt.ioff() fig = plt.figure(figsize=(size * (1 + len(poses)), size)) ax_in = fig.add_subplot(1, 1 + len(poses), 1) ax_in.get_xaxis().set_visible(False) ax_in.get_yaxis().set_visible(False) ax_in.set_axis_off() ax_in.set_title('Input') ax_3d = [] lines_3d = [] lines_3d_anno = [] trajectories = [] radius = 1.7 for index, (title, data) in enumerate(poses.items()): ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') ax.view_init(elev=15., azim=azim) ax.set_xlim3d([-radius / 2, radius / 2]) ax.set_zlim3d([0, radius]) ax.set_ylim3d([-radius / 2, radius / 2]) # ax.set_aspect('equal') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) ax.dist = 7.5 ax.set_title(title) # , pad=35 ax_3d.append(ax) lines_3d.append([]) trajectories.append(data[:, 0, [0, 1]]) poses = list(poses.values()) # Decode video if input_video_path is None: # Black background all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') else: # Load video using ffmpeg all_frames = [] for f in read_video(input_video_path, skip=input_video_skip, limit=limit): all_frames.append(f) effective_length = min(keypoints.shape[0], len(all_frames)) all_frames = all_frames[:effective_length] keypoints = keypoints[input_video_skip:] # todo remove for idx in range(len(poses)): poses[idx] = poses[idx][input_video_skip:] if fps is None: fps = get_fps(input_video_path) if downsample > 1: keypoints = downsample_tensor(keypoints, downsample) all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') for idx in range(len(poses)): poses[idx] = downsample_tensor(poses[idx], downsample) trajectories[idx] = downsample_tensor(trajectories[idx], downsample) fps /= downsample initialized = False image = None lines = [] points = None if limit < 1: limit = len(all_frames) else: limit = min(limit, len(all_frames)) parents = skeleton.parents() def update_video(i): nonlocal initialized, image, lines, points for n, ax in enumerate(ax_3d): ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]]) ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]]) # Update 2D poses joints_right_2d = keypoints_metadata['keypoints_symmetry'][1] joints_left_2d = keypoints_metadata['keypoints_symmetry'][0] colors_2d = np.full(keypoints.shape[1], 'peru', dtype="object") colors_2d[joints_right_2d] = 'darkseagreen' colors_2d[joints_left_2d] = 'slateblue' if not initialized: image = ax_in.imshow(all_frames[i], aspect='equal') for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: # Draw skeleton only if keypoints match (otherwise we don't have the parents definition) lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color=colors_2d[j])) col = 'red' if j in skeleton.joints_right() else 'black' for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], [pos[j, 1], pos[j_parent, 1]], [pos[j, 2], pos[j_parent, 2]], zdir='z', c=colors_2d[j])) ax.text(pos[j, 0] - 0.1, pos[j, 1] - 0.1, pos[j, 2] - 0.1, j) # points = ax_in.scatter(*keypoints[i].T, 0, zorder=10) initialized = True else: image.set_data(all_frames[i]) for j, j_parent in enumerate(parents): if j_parent == -1: continue # if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': if len(parents) == keypoints.shape[1]: lines[(j - 1) * 2][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]], [keypoints[i, j, 1], keypoints[i, j_parent, 1]]) for n, ax in enumerate(ax_3d): pos = poses[n][i] lines_3d[n][j - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]]) lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') # points.set_offsets(keypoints[i]) print('{}/{} '.format(i, limit), end='\r') fig.tight_layout() anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False) if output.endswith('.mp4'): Writer = writers['ffmpeg'] writer = Writer(fps=fps, metadata={}, bitrate=bitrate) anim.save(output, writer=writer) elif output.endswith('.gif'): anim.save(output, dpi=80, writer='imagemagick') else: raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') plt.close()